Aeroacoustics is a branch of acoustics that studies noise generation via either turbulentfluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects. Although no complete scientific theory of the generation of noise by aerodynamic flows has been established, most practical aeroacoustic analysis relies upon the so-called aeroacoustic analogy, proposed by Sir James Lighthill in the 1950s while at the University of Manchester. whereby the governing equations of motion of the fluid are coerced into a form reminiscent of the wave equation of "classical" acoustics in the left-hand side with the remaining terms as sources in the right-hand side.
History
The modern discipline of aeroacoustics can be said to have originated with the first publication of Lighthill in the early 1950s, when noise generation associated with the jet engine was beginning to be placed under scientific scrutiny.
Lighthill's equation
Lighthill rearranged the Navier–Stokes equations, which govern the flow of a compressibleviscous fluid, into an inhomogeneouswave equation, thereby making a connection between fluid mechanics and acoustics. This is often called "Lighthill's analogy" because it presents a model for the acoustic field that is not, strictly speaking, based on the physics of flow-induced/generated noise, but rather on the analogy of how they might be represented through the governing equations of a compressible fluid. The first equation of interest is the conservation of mass equation, which reads where and represent the density and velocity of the fluid, which depend on space and time, and is the substantial derivative. Next is the conservation of momentum equation, which is given by where is the thermodynamic pressure, and is the viscous part of the stress tensor from the Navier–Stokes equations. Now, multiplying the conservation of mass equation by and adding it to the conservation of momentum equation gives Note that is a tensor. Differentiating the conservation of mass equation with respect to time, taking the divergence of the last equation and subtracting the latter from the former, we arrive at Subtracting, where is the speed of sound in the medium in its equilibrium state, from both sides of the last equation and rearranging it results in which is equivalent to where is the identity tensor, and denotes the tensor contraction operator. The above equation is the celebrated Lighthill equation of aeroacoustics. It is a wave equation with a source term on the right-hand side, i.e. an inhomogeneous wave equation. The argument of the "double-divergence operator" on the right-hand side of last equation, i.e., is the so-called Lighthill turbulence stress tensor for the acoustic field, and it is commonly denoted by. Using Einstein notation, Lighthill’s equation can be written as where and is the Kronecker delta. Each of the acoustic source terms, i.e. terms in, may play a significant role in the generation of noise depending upon flow conditions considered. describes unsteady convection of flow, describes sound generated by viscosity, and describes non-linear acoustic generation processes. In practice, it is customary to neglect the effects of viscosity on the fluid, i.e. one takes, because it is generally accepted that the effects of the latter on noise generation, in most situations, are orders of magnitude smaller than those due to the other terms. Lighthill provides an in-depth discussion of this matter. In aeroacoustic studies, both theoretical and computational efforts are made to solve for the acoustic source terms in Lighthill's equation in order to make statements regarding the relevant aerodynamic noise generation mechanisms present. Finally, it is important to realize that Lighthill's equation is exact in the sense that no approximations of any kind have been made in its derivation.
Related model equations
In their classical text on fluid mechanics, Landau and Lifshitz derive an aeroacoustic equation analogous to Lighthill's, but for the incompressible flow of an inviscid fluid. The inhomogeneous wave equation that they obtain is for the pressure rather than for the density of the fluid. Furthermore, unlike Lighthill's equation, Landau and Lifshitz's equation is not exact; it is an approximation. If one is to allow for approximations to be made, a simpler way to obtain an approximation to Lighthill's equation is to assume that, where and are the density and pressure of the fluid in its equilibrium state. Then, upon substitution the assumed relation between pressure and density into we obtain the equation And for the case when the fluid is indeed incompressible, i.e. everywhere, then we obtain exactly the equation given in Landau and Lifshitz, namely A similar approximation , namely, is suggested by Lighthill . Of course, one might wonder whether we are justified in assuming that. The answer is affirmative, if the flow satisfies certain basic assumptions. In particular, if and, then the assumed relation follows directly from the lineartheory of sound waves. In fact, the approximate relation between and that we assumed is just a linear approximation to the generic barotropicequation of state of the fluid. However, even after the above deliberations, it is still not clear whether one is justified in using an inherently linear relation to simplify a nonlinear wave equation. Nevertheless, it is a very common practice in nonlinear acoustics as the textbooks on the subject show: e.g., Naugolnykh and Ostrovsky and Hamilton and Morfey.