In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt.
As in the symmetric group, any two elements of An that are conjugate by an element of An must have the same cycle shape. The converse is not necessarily true, however. If the cycle shape consists only of cycles of odd length with no two cycles the same length, where cycles of length one are included in the cycle type, then there are exactly two conjugacy classes for this cycle shape. Examples:
The two permutations and are not conjugates in A3, although they have the same cycle shape, and are therefore conjugate in S3.
The permutation is not conjugate to its inverse in A8, although the two permutations have the same cycle shape, so they are conjugate in S8.
Relation with symmetric group
Generators and relations
An is generated by 3-cycles, since 3-cycles can be obtained by combining pairs of transpositions. This generating set is often used to prove that An is simple for.
Automorphism group
For, except for, the automorphism group of An is the symmetric group Sn, with inner automorphism group An and outer automorphism group Z2; the outer automorphism comes from conjugation by an odd permutation. For and 2, the automorphism group is trivial. For the automorphism group is Z2, with trivial inner automorphism group and outer automorphism group Z2. The outer automorphism group of A6 is the Klein four-group, and is related to the outer automorphism of S6. The extra outer automorphism in A6 swaps the 3-cycles with elements of shape 32 ).
Exceptional isomorphisms
There are some exceptional isomorphisms between some of the small alternating groups and small groups of Lie type, particularly projective special linear groups. These are:
A5 is isomorphic to PSL2, PSL2, and the symmetry group of chiral icosahedral symmetry..
A6 is isomorphic to PSL2 and PSp4'.
A8 is isomorphic to PSL4.
More obviously, A3 is isomorphic to the cyclic group Z3, and A0, A1, and A2 are isomorphic to the trivial group.
Examples ''S''4 and ''A''4
A3 = Z3
A4
A4 × Z2
S3 = Dih3
S4
A4 in S4 on the left
Example A5 as a subgroup of 3-space rotations
is the group of isometries of a dodecahedron in 3 space, so there is a representation In this picture the vertices of the polyhedra represent the elements of the group, with the center of the sphere representing the identity element. Each vertex represents a rotation about the axis pointing from the center to that vertex, by an angle equal tothe distance from the origin, in radians. Vertices in the same polyhedron are in the same conjugacy class. Since the conjugacy class equation for is 1+12+12+15+20=60, we obtain four distinct polyhedra. The vertices of each polyhedron are in bijective correspondence with the elements of its conjugacy class, with the exception of the conjugacy class of -cycles, which is represented by an icosidodecahedron on the outer surface, with its antipodal vertices identified with each other. The reason for this redundancy is that the corresponding rotations are by radians, and so can be represented by a vector of length in either of two directions. Thus the class of -cycles contains 15 elements, while the icosidodecahedron has 30 vertices. The two conjugacy classes of twelve 5-cycles in are represented by two icosahedra, of radii and, respectively. The nontrivial outer automorphism in interchanges these two classes and the corresponding icosahedra.
Subgroups
A4 is the smallest group demonstrating that the converse of Lagrange's theorem is not true in general: given a finite groupG and a divisor d of, there does not necessarily exist a subgroup of G with order d: the group, of order 12, has no subgroup of order 6. A subgroup of three elements with any distinct nontrivial element generates the whole group. For all, An has no nontrivial normal subgroups. Thus, An is a simple group for all. A5 is the smallest non-solvable group.
Group homology
The group homology of the alternating groups exhibits stabilization, as in stable homotopy theory: for sufficiently largen, it is constant. However, there are some low-dimensional exceptional homology. Note that the homology of the symmetric group exhibits similar stabilization, but without the low-dimensional exceptions.
H1: Abelianization
The first homology group coincides with abelianization, and is thus: This is easily seen directly, as follows. is generated by 3-cycles – so the only non-trivial abelianization maps are since order 3 elements must map to order 3 elements – and for all 3-cycles are conjugate, so they must map to the same element in the abelianization, since conjugation is trivial in abelian groups. Thus a 3-cycle like must map to the same element as its inverse, but thus must map to the identity, as it must then have order dividing 2 and 3, so the abelianization is trivial. For, is trivial, and thus has trivial abelianization. For and one can compute the abelianization directly, noting that the 3-cycles form two conjugacy classes and there are non-trivial maps and
The Schur multipliers of the alternating groups An are the cyclic groups of order 2, except in the case where n is either 6 or 7, in which case there is also a triple cover. In these cases, then, the Schur multiplier is of order 6. These were first computed in.