Amateur radio frequency allocations


Amateur radio frequency allocation is done by national telecommunication authorities. Globally, the International Telecommunication Union oversees how much radio spectrum is set aside for amateur radio transmissions. Individual amateur stations are free to use any frequency within authorized frequency ranges; authorized bands may vary by the class of the station license.
Radio amateurs use a variety of transmission modes, including Morse code, radioteletype, data, and voice. Specific frequency allocations vary from country to country and between ITU regions as specified in the current ITU HF frequency allocations for amateur radio. The list of frequency ranges is called a band allocation, which may be set by international agreements, and national regulations. The modes and types of allocations within each frequency band is called a bandplan; it may be determined by regulation, but most typically is set by agreements between amateur radio operators.
National authorities regulate amateur usage of radio bands. Some bands may not be available or may have restrictions on usage in certain countries or regions. International agreements assign amateur radio bands which differ by region.

Band characteristics

Low frequency

Frequencies above 30 MHz are referred to as Very High Frequency region and those above 300 MHz are called Ultra High Frequency. The allocated bands for amateurs are many megahertz wide, allowing for high-fidelity audio transmission modes and very fast data transmission modes that are unfeasible for the kilohertz-wide allocations in the HF bands.
While "line of sight" propagation is a primary factor for range calculation, much of the interest in the bands above HF comes from use of other propagation modes. A signal transmitted on VHF from a hand-held portable will typically travel about 5-10 km depending on terrain. With a low power home station and a simple antenna, range would be around 50 km.
With a large antenna system like a long yagi, and higher power contacts of around 1000 km using the Morse code and single-sideband modes are common. Ham operators seek to exploit the limits of the frequencies usual characteristics looking to learn, understand, and experiment with the possibilities of these enhanced propagation modes.

Sporadic band openings

Occasionally, several different ionospheric conditions allow signals to travel beyond the ordinary line-of-sight limits. Some amateurs on VHF seek to take advantage of "band openings" where natural occurrences in the atmosphere and ionosphere extend radio transmission distances well over their normal range. Many hams listen for hours hoping to take advantage of these occasional extended propagation "openings".
The ionospheric conditions are called Sporadic E and Anomalous enhancement. Less frequently used anomalous modes are tropospheric scatter and Aurora Borealis. When overhead, moon bounce and satellite relay are also possible.
''Sporadic E''
Some openings are caused by islands of intense ionization of the upper atmosphere known as the E Layer ionosphere. These islands of intense ionization are called "Sporadic E" and result in erratic but often strong propagation characteristics on the "low band" VHF radio frequencies.
The 6 meter amateur band falls into this category, often called "The Magic Band", 6 meters will often "open up" from one small area into another small geographic area 1000–1700 km away during the spring and early summer months. This phenomenon occurs during the fall months, although not as often.
''Tropospheric refraction''
Band openings are sometimes caused by a weather phenomenon known as a tropospheric "inversion", where a stagnant high pressure area causes alternating stratified layers of warm and cold air generally trapping the colder air beneath. This may make for smoggy/foggy days but it also causes VHF/UHF radio transmissions to travel or duct along the boundaries of these warm/cold atmospheric layers. Radio signals have been known to travel hundreds, even thousands of kilometers due to these unique weather conditions.
For example: The longest distance reported contact due to tropospheric refraction on 2 meters is 4754 km between Hawaii and a ship south of Mexico. There were reports of the reception of one way signals from Réunion to Western Australia, a distance of more than 6000 km.
"Tropo-scatter" happens when water droplets and dust particles refract a VHF/UHF signal over the horizon. Using relatively high power and a high gain antenna, this propagation will give marginal enhanced over-the-horizon VHF and UHF communications up to several hundred kilometers. During the 1970s commercial "scatter site" operators using huge parabolic antennas and high power used this mode successfully for telephone communications services into remote Alaska and Canadian northern communities.
Satellite, buried fiber optic, and terrestrial microwave access have relegated commercial use of tropo-scatter to the history books. Because of high cost and complexity this mode is usually out of reach for the average amateur radio operator.
''Anomalous trans-equatorial enhancement''
F2 and TE band openings from other ionospheric reflection/refraction modes, or sky-wave propagation as it is known can also occasionally occur on the low band VHF frequencies of 6 or 4 meters, and very rarely on 2 meters during extreme peaks in the 11 year sunspot cycle.
The longest terrestrial contact ever reported on 2 meters was between a station in Italy and a station in South Africa, a distance of 7784 km, using anomalous enhancement of the ionosphere over the geomagnetic equator. This enhancement is known as TE, or trans-equatorial propagation and occurs at latitudes 2500–3000 km within either side of the equator.
''Auroral backscatter''
''Moon Bounce (Earth-Moon-Earth)''
Amateurs do successfully communicate by bouncing their signals off the surface of the moon, called Earth-Moon-Earth transmission.
The mode requires moderately high power and a fairly large, high-gain antenna because round-trip path loss is on the order of 270 dB for 70 cm signals. Return signals are weak and distorted because of the relative velocities of the transmitting station, moon and the receiving station. The moon's surface is also very rocky and irregular.
Because of the weak, distorted return signals, Moon bounce communications use digital modes. For example, old-fashioned Morse code or modern JT65, designed for working with weak signals.
''Satellite relay''
is not really a propagation mode, but rather an active repeater system. Satellites have been highly successful in providing VHF/UHF/SHF users "propagation" beyond the horizon.
Amateurs have sponsored the launch of dozens of communications satellites since the 1970s. These satellites are usually known as OSCARs. Also, the ISS has amateur radio repeaters and radio location services on board.

Amateur television

Amateur television is the hobby of transmitting broadcast- compatible video and audio by amateur radio. It also includes the study and building of such transmitters and receivers and the propagation between these two.
In NTSC countries, ATV operation requires the ability to use a 6 MHz wide channel. All bands at VHF or lower are less than 6 MHz wide, so ATV operation is confined to UHF and up. Bandwidth requirements will vary from this for PAL and SECAM transmissions.
ATV operation in the 70 cm band is particularly popular, because the signals can be received on any cable-ready television. Operation in the 33 cm and 23 cm bands is easily augmented by the availability of various varieties of consumer-grade wireless video devices that exist and operate in unlicensed frequencies coincident to these bands.
Repeater ATV operation requires specially-equipped repeaters.
See also slow-scan television.

Below the MW broadcast band

Historically, amateur stations have rarely been allowed to operate on frequencies lower than the medium-wave broadcast band, but in recent times, as the historic users of these low frequencies have been vacating the spectrum, limited space has opened up to allow for new amateur radio allocations and special experimental operations.
Since parts of the 500 kHz band are no longer used for regular maritime communications, some countries permit amateur radio radiotelegraph operations in that band. Many countries, however, continue to restrict these frequencies which were historically reserved for maritime and aviation distress calls.
The 2200 meter band is available for use in several countries, and the 2007 World Radiocommunication Conference made it a worldwide amateur allocation. Before the introduction of the 2200 meter band in the UK in 1998, operation on the even lower frequency of 73 kHz had been allowed between 1996 and 2003.

ITU Region 1

ITU Region 1 corresponds to Europe, Russia, Africa and the Middle East. For ITU region 1, Radio Society of Great Britain's will be more definitive.
The following charts show the voluntary bandplans used by amateurs in ITU Region 1. Unlike the US, slots for the various transmission modes are not set by the amateur's license but most users do follow these guidelines.

160 metres

160 Metres1810 18381838 18401840 18431843 2000
IARU Region 1

80 metres

80 Metres3500 35703570 36003600 36203620 3800
IARU Region 1

60 metres

40 metres

30 metres

20 metres

17 metres

15 metres

12 meters

10 metres

Key

ITU Region 2

ITU region 2 consists of the Americas, including Greenland.
The frequency allocations for hams in ITU Region 2 are:

Special note on the channeled 60 meter band

is the primary user of the 60 meter band. Effective 5 March 2012 the FCC has permitted CW, USB, and certain digital modes on these frequencies by amateurs on a secondary basis.
The FCC Report and Order permits the use of digital modes that comply with emission designator 60H0J2B, which includes PSK31 as well as any RTTY signal with a bandwidth of less than 60 Hz. The Report and Order also allows the use of modes that comply with emission designator 2K80J2D, which includes any digital mode with a bandwidth of 2.8 kHz or less whose technical characteristics have been documented publicly, per Part 97.309 of the FCC Rules. Such modes would include PACTOR I, II or III, 300-baud packet, MFSK, MT63, Contestia, Olivia, DominoEX and others.
On 60 meters hams are restricted to only one signal per channel and automatic operation is not permitted. In addition, the FCC continues to require that all digital transmissions be centered on the channel-center frequencies, which the Report and Order defines as being 1.5 kHz above the suppressed carrier frequency of a transceiver operated in the Upper Sideband mode. As amateur radio equipment displays the carrier frequency, it is important for operators to understand correct frequency calculations for digital "sound-card" modes to ensure compliance with the channel-center requirement.
The ARRL has a for US hams showing allocations within each band.
RAC has a .

Table of amateur MF and HF allocations in the United States and Canada

Key

ITU Region 3

ITU region 3 consists of Australia, Indonesia, Japan, New Zealand, the South Pacific, and Asia south of Siberia. The IARU frequency allocations for hams in ITU Region 3 are:
Bands above 1300 MHz:
Societies should consult with the amateur satellite community for proposed satellite operating frequencies before deciding local bandplans above 1300 MHz.
Not all Member Unions follow this plan. As an example, the ACMA does not allow Australian Amateurs to use 3.700 MHz to 3.768 MHz and 3.800 MHz to 3.900 MHz, allocating this region to Emergency and Ambulatory services
The Wireless Institute of Australia has
The New Zealand Association of Radio Transmitters has
The Japanese have charts for Amateur frequencies in Japan

Space operations

Radio amateurs may engage in satellite and space craft communications; however, the frequencies allowed for such activities are allocated separately from more general use radio amateur bands.
Under the International Telecommunication Union's rules, all amateur radio operations may only occur within of the Earth's surface. As such, the Amateur Radio Service is not permitted to engage in satellite operations; however, a sister radio service, called the Amateur Satellite Service, exists which allows satellite operations for the same purposes as the Amateur Radio Service.
In most countries, an amateur radio license conveys operating privileges in both services, and in practice, the legal distinction between the two services is transparent to the average licensee. The primary reason the two services are separate is to limit the frequencies available for satellite operations. Due to the shared nature of the amateur radio allocations internationally, and the nature of satellites to roam worldwide, the ITU does not consider all amateur radio bands appropriate for satellite operations. Being separate from the Amateur Radio Service, the Amateur Satellite Service receives its own frequency allocations. All the allocations are within amateur radio bands, and with one exception, the allocations are the same in all three ITU regions.
Some of the allocations are limited by the ITU in what direction transmissions may be sent. All amateur satellite operations occur within the allocations tabled below, except for AO-7, which has an up-link from 432.125 MHz to 432.175 MHz.