The classical objects of interest in arithmetic geometry are rational points: sets of solutions of a system of polynomial equations over number fields, finite fields, p-adic fields, or function fields, i.e. fields that are not algebraically closed excluding the real numbers. Rational points can be directly characterized by height functions which measure their arithmetic complexity. The structure of algebraic varieties defined over non-algebraically-closed fields has become a central area of interest that arose with the modern abstract development of algebraic geometry. Over finite fields, étale cohomology provides topological invariants associated to algebraic varieties. p-adic Hodge theory gives tools to examine when cohomological properties of varieties over the complex numbers extend to those over p-adic fields.
History
19th century: early arithmetic geometry
In the early 19th century, Carl Friedrich Gauss observed that non-zero integer solutions to homogeneous polynomial equations with rational coefficients exist if non-zero rational solutions exist. In the 1850s, Leopold Kronecker formulated the Kronecker–Weber theorem, introduced the theory of divisors, and made numerous other connections between number theory and algebra. He then conjectured his "liebster Jugendtraum", a generalization that was later put forward by Hilbert in a modified form as his twelfth problem, which outlines a goal to have number theory operate only with rings that are quotients of polynomial rings over the integers.
Early-to-mid 20th century: algebraic developments and the Weil conjectures
In the late 1920s, André Weil demonstrated profound connections between algebraic geometry and number theory with his doctoral work leading to the Mordell–Weil theorem which demonstrates that the set of rational points of an abelian variety is a finitely generated abelian group. Modern foundations of algebraic geometry were developed based on contemporary commutative algebra, including valuation theory and the theory of ideals by Oscar Zariski and others in the 1930s and 1940s. In 1949, André Weil posed the landmark Weil conjectures about the local zeta-functions of algebraic varieties over finite fields. These conjectures offered a framework between algebraic geometry and number theory that propelled Alexander Grothendieck to recast the foundations making use of sheaf theory, and later scheme theory, in the 1950s and 1960s. Bernard Dwork proved one of the four Weil conjectures in 1960. Grothendieck developed étale cohomology theory to prove two of the Weil conjectures by 1965. The last of the Weil conjectures would be finally proven in 1974 by Pierre Deligne.
Mid-to-late 20th century: developments in modularity, p-adic methods, and beyond