Bell's spaceship paradox


Bell's spaceship paradox is a thought experiment in special relativity. It was designed by E. Dewan and M. Beran in 1959 and became more widely known when J. S. Bell included a modified version. A delicate string or thread hangs between two spaceships. Both spaceships start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times in S. Therefore, they are all subject to the same Lorentz contraction, so the entire assembly seems to be equally contracted in the S frame with respect to the length at the start. Therefore, at first sight, it might appear that the thread will not break during acceleration.
This argument, however, is incorrect as shown by Dewan and Beran and Bell. The distance between the spaceships does not undergo Lorentz contraction with respect to the distance at the start, because in S, it is effectively defined to remain the same, due to the equal and simultaneous acceleration of both spaceships in S. It also turns out that the rest length between the two has increased in the frames in which they are momentarily at rest, because the accelerations of the spaceships are not simultaneous here due to relativity of simultaneity. The thread, on the other hand, being a physical object held together by electrostatic forces, maintains the same rest length. Thus, in frame S, it must be Lorentz contracted, which result can also be derived when the electromagnetic fields of bodies in motion are considered. So, calculations made in both frames show that the thread will break; in S′ due to the non-simultaneous acceleration and the increasing distance between the spaceships, and in S due to length contraction of the thread.
In the following, the rest length or proper length of an object is its length measured in the object's rest frame.

Dewan and Beran

Dewan and Beran stated the thought experiment by writing:
Then this setup is repeated again, but this time the back of the first rocket is connected with the front of the second rocket by a silk thread. They concluded:
Dewan and Beran also discussed the result from the viewpoint of inertial frames momentarily comoving with the first rocket, by applying a Lorentz transformation:
They concluded:
Then they discussed the objection, that there should be no difference between a) the distance between two ends of a connected rod, and b) the distance between two unconnected objects which move with the same velocity with respect to an inertial frame. Dewan and Beran removed those objections by arguing:
In Bell's version of the thought experiment, three spaceships A, B and C are initially at rest in a common inertial reference frame, B and C being equidistant to A. Then, a signal is sent from A to reach B and C simultaneously, causing B and C starting to accelerate in the vertical direction, while A stays at rest in its original reference frame. According to Bell, this implies that B and C "will have at every moment the same velocity, and so remain displaced one from the other by a fixed distance." Now, if a fragile thread is tied between B and C, it's not long enough anymore due to length contractions, thus it will break. He concluded that "the artificial prevention of the natural contraction imposes intolerable stress".
Bell reported that he encountered much skepticism from "a distinguished experimentalist" when he presented the paradox. To attempt to resolve the dispute, an informal and non-systematic survey of opinion at CERN was held. According to Bell, there was "clear consensus" which asserted, incorrectly, that the string would not break. Bell goes on to add,

Importance of length contraction

In general, it was concluded by Dewan & Beran and Bell, that relativistic stresses arise when all parts of an object are accelerated the same way with respect to an inertial frame, and that length contraction has real physical consequences. For instance, Bell argued that the length contraction of objects as well as the lack of length contraction between objects in frame S can be explained using relativistic electromagnetism. The distorted electromagnetic intermolecular fields cause moving objects to contract, or to become stressed if hindered from doing so. In contrast, no such forces act on the space between objects.
However, Petkov and Franklin interpret this paradox differently. They agreed with the result that the string will break due to unequal accelerations in the rocket frames, which causes the rest length between them to increase. However, they denied the idea that those stresses are caused by length contraction in S. This is because, in their opinion, length contraction has no "physical reality", but is merely the result of a Lorentz transformation, i.e. a rotation in four-dimensional space which by itself can never cause any stress at all. Thus the occurrence of such stresses in all reference frames including S and the breaking of the string is supposed to be the effect of relativistic acceleration alone.

Discussions and publications

Paul Nawrocki gives three arguments why the string should not break, while Edmond Dewan showed in a reply that his original [|analysis] still remains valid. Many years later and after Bell's book, Matsuda and Kinoshita reported receiving much criticism after publishing an article on their independently rediscovered version of the paradox in a Japanese journal. Matsuda and Kinoshita do not cite specific papers, however, stating only that these objections were written in Japanese.
However, in most publications it is agreed that stresses arise in the string, with some reformulations, modifications and different scenarios, such as by Evett & Wangsness,
Dewan,
Romain,
Evett,
Gershtein & Logunov,
Tartaglia & Ruggiero,
Cornwell,
Flores,
Semay,
Styer,
Freund,
Redzic,
Peregoudov,
Redžić,
Gu,
Petkov,
Franklin,
Miller,
Fernflores,
Kassner,
Natario,
Lewis, Barnes & Sticka,
Bokor.
A similar problem was also discussed in relation to angular accelerations: Grøn,
MacGregor,
Grøn.

Relativistic solution of the problem

Rotating disc

Bell's spaceship paradox is not about preserving the rest length between objects, but about preserving the distance in an inertial frame relative to which the objects are in motion, for which the Ehrenfest paradox is an example. Historically, Albert Einstein had already recognized in the course of his development of general relativity, that the circumference of a rotating disc is measured to be larger in the corotating frame than the one measured in an inertial frame.
Einstein explained in 1916:
As pointed out more precisely by Einstein in 1919, the relation is given
being the circumference in the corotating frame, in the laboratory frame, is the Lorentz factor. Therefore, it's impossible to bring a disc from the state of rest into rotation in a Born rigid manner. Instead, stresses arise during the phase of accelerated rotation, until the disc enters the state of uniform rotation.

Immediate acceleration

Similarly, in the case of Bell's spaceship paradox the relation between the initial rest length between the ships and the new rest length in S′ after acceleration, is:
This length increase can be calculated in different ways. For instance, if the acceleration is finished the ships will constantly remain at the same location in the final rest frame S′, so it's only necessary to compute the distance between the x-coordinates transformed from S to S′. If and are the ships' positions in S, the positions in their new rest frame S′ are:
Another method was shown by Dewan who demonstrated the importance of relativity of simultaneity. The perspective of frame S′ is described, in which both ships will be at rest after the acceleration is finished. The ships are accelerating simultaneously at in S, though B is accelerating and stopping in S′ before A due to relativity of simultaneity, with the time difference:
Since the ships are moving with the same velocity in S′ before acceleration, the initial rest length in S is shortened in S′ by due to length contraction. This distance starts to increase after B came to stop, because A is now moving away from B with constant velocity during until A stops as well. Dewan arrived at the relation :
It was also noted by several authors that the constant length in S and the increased length in S′ is consistent with the length contraction formula, because the initial rest length is increased by in S′, which is contracted in S by the same factor, so it stays the same in S:
Summarizing: While the rest distance between the ships increases to in S′, the relativity principle requires that the string maintains its rest length in its new rest system S′. Therefore, it breaks in S′ due to the increasing distance between the ships. [|As explained above], the same is also obtained by only considering the start frame S using length contraction of the string while the distance between the ships stays the same due to equal acceleration.

Constant proper acceleration

Instead of instantaneous changes of direction, special relativity also allows to describe the more realistic scenario of constant proper acceleration, i.e. the acceleration indicated by a comoving accelerometer. This leads to hyperbolic motion, in which the observer continuously changes momentary inertial frames
where is the coordinate time in the external inertial frame, and the proper time in the momentary frame, and the momentary velocity is given by
The mathematical treatment of this paradox is similar to the treatment of Born rigid motion. However, rather than ask about the separation of spaceships with the same acceleration in an inertial frame, the problem of Born rigid motion asks, "What acceleration profile is required by the second spaceship so that the distance between the spaceships remains constant in their proper frame?" In order for the two spaceships, initially at rest in an inertial frame, to maintain a constant proper distance, the lead spaceship must have a lower proper acceleration.
This Born rigid frame can be described by using Rindler coordinates
The condition of Born rigidity requires that the proper acceleration of the spaceships differs by
and the length measured in the Rindler frame by one of the observers is Lorentz contracted to in the external inertial frame by
which is the same result as above. Consequently, in the case of Born rigidity, the constancy of length L' in the momentary frame implies that L in the external frame decreases constantly, the thread doesn't break. However, in the case of Bell's spaceship paradox the condition of Born rigidity is broken, because the constancy of length L in the external frame implies that L' in the momentary frame increases, the thread breaks.