Benjamin W. Lee


Benjamin Whisoh Lee or Ben Lee, was a Korean-born American theoretical physicist. His work in theoretical particle physics exerted great influence on the development of the standard model in the late 20th century, especially on the renormalization of the electro-weak model and gauge theory.
He predicted the mass of the Charm quark and contributed to its search. Since his inception as a physicist, he has published 110 papers for about 20 years, of which 77 papers have been published in the journal. There are 69 papers cited more than 10 times and eight papers cited more than 500 times. As of October 2013, all of his papers are cited more than 13,400 times. As a major disciple, Kang Joo-sang, professor emeritus at the Department of Physics at Korea University, is also the motif of the fictional character Lee Yong-hu in Kim Jin-myung's novel, "The Rose of Sharon Blooms Again"

Biography

Lee was born in Yongsan, Seoul. Both his parents were trained as doctors. Whisoh was the eldest of four siblings. His mother was the wage winner of the household, who was initially employed as a doctor at a hospital and later opened her own practice specializing in pediatrics and obstetrics/gynaecology. Lee took the entrance exam for Kyunggi Middle School and was accepted. He was an excellent pupil. The Korean War broke out on his 4th year. Lee's family evacuated to the Busan Perimeter and Whisoh continued his schooling there. One year before graduating Kyunggi High School, he entered the department of chemical engineering at Seoul National University at the top of his class. While in college he emigrated to the United States through a scholarship program enabled by the association of spouses of the military officers who participated in the Korean War. Lee received his Bachelor of Science degree at Miami University, Master of Science at the University of Pittsburgh, and Ph.D. at the University of Pennsylvania. Lee worked at Institute for Advanced Study and was a professor of physics at University of Pennsylvania, SUNY at Stony Brook, University of Chicago, and head of the theoretical physics department at Fermi National Accelerator Laboratory. He was elected a Fellow of the American Academy of Arts and Sciences in 1976. On June 16, 1977, he was killed in a car accident not far from Kewanee, Illinois. Lee was regarded by his peers as a world-class elementary particle physicist at the time of his sudden death.
He studied gauge theory and weak interactions.

Research

Gauge theory

In 1964, Lee published an article about spontaneous symmetry breaking with his advisor Abraham Klein and contributed to the appearance of Higgs mechanism.
He is often credited with the naming of the Higgs boson and Higgs mechanism.
And in 1969, he succeeded individually the renormalization of the spontaneously breaking global gauge symmetry model. In the meantime, Dutch graduate student Gerardus 't Hooft was working in the case of local gauge symmetry breaking in the Yang–Mills theory using the Higgs mechanism. He met Lee and Symanzik at the Cargèse Summer School and consulted them on his work and got an insight. He finally succeeded in the renormalization of non-abelian gauge theory and won the Nobel Prize later for this work. David Politzer said in his 2004 Nobel Lecture that the particle physicists community at that time learned all from Lee who actually combined insights from his own work and from Russian physicists' work and encouraged 't Hooft's paper.

Charm quark

, Maiani and Iliopoulos predicted charm quarks to match the experimental results. Lee wrote an article with Gaillard and Rosner and predicted the mass of the charm quarks by calculating the quantities which correspond to the mixing and decay of K meson.

Cosmology

In 1977, Lee and Weinberg wrote an article about the lower bound on heavy neutrino mass.
In this paper, they revealed that if the heavy and stable particles in the early universe which can only be transferred into other particles through the pair annihilation remain as relics after the universe's expansion, then the strength of the interaction should be bigger than 2 GeV. This calculation can be applied to find the amount of the dark matter. This bound is called the Lee-Weinberg bound.

Lee's promotion of gauge theories

Weinberg's 1967 paper A Model of Leptons has over 15,000 citations and played a key role in the award of his 1979 Nobel prize. In 1972 at a conference at Fermilab, Lee gave a talk Perspectives on Theory of Weak Interactions that brought Weinberg's 1967 paper out of obscurity and explained many aspects of gauge theories to a large audience.

Controversy over death

allegedly based on Lee's death was published in 1993, which presumably suggested that Lee tried to help South Korea's dictatorship develop nuclear weapons, and implied that the U.S.' Central Intelligence Agency had some connection to his death. In actuality, he vigorously opposed the autocratic system of South Korea at that time and he canceled every program he designed for South Korean graduate education about particle physics in opposition to that government. According to a Fermilab memoriam, Lee died in a car accident on Illinois highway I-80 in 1977, at age 42. A semi-trailer crossed the highway divide and collided with his car.

Book

*