Biochemical cascade
A biochemical cascade, also known as a signaling cascade or signaling pathway, is a series of chemical reactions that occur within a biological cell when initiated by a stimulus. This stimulus, known as a first messenger, acts on a receptor that is transduced to the cell interior through second messengers which amplify the signal and transfer it to effector molecules, causing the cell to respond to the initial stimulus. Most biochemical cascades are series of events, in which one event triggers the next, in a linear fashion. At each step of the signaling cascade, various controlling factors are involved to regulate cellular actions, in order to respond effectively to cues about their changing internal and external environments.
An example would be the coagulation cascade of secondary hemostasis which leads to fibrin formation, and thus, the initiation of blood coagulation. Another example, sonic hedgehog signaling pathway, is one of the key regulators of embryonic development and is present in all bilaterians. Signaling proteins give cells information to make the embryo develop properly. When the pathway malfunctions, it can result in diseases like basal cell carcinoma. Recent studies point to the role of hedgehog signaling in regulating adult stem cells involved in maintenance and regeneration of adult tissues. The pathway has also been implicated in the development of some cancers. Drugs that specifically target hedgehog signaling to fight diseases are being actively developed by a number of pharmaceutical companies.
Introduction
Signaling cascades
Cells require a full and functional cellular machinery to live. When they belong to complex multicellular organisms, they need to communicate among themselves and work for symbiosis in order to give life to the organism. These communications between cells triggers intracellular signaling cascades, termed signal transduction pathways, that regulate specific cellular functions. Each signal transduction occurs with a primary extracellular messenger that binds to a transmembrane or nuclear receptor, initiating intracellular signals. The complex formed produces or releases second messengers that integrate and adapt the signal, amplifying it, by activating molecular targets, which in turn trigger effectors that will lead to the desired cellular response.Transductors and effectors
Signal transduction is realized by activation of specific receptors and consequent production/delivery of second messengers, such as Ca2+ or cAMP. These molecules operate as signal transducers, triggering intracellular cascades and in turn amplifying the initial signal.Two main signal transduction mechanisms have been identified, via nuclear receptors, or via transmembrane receptors. In the first one, first messenger cross through the cell membrane, binding and activating intracellular receptors localized at nucleus or cytosol, which then act as transcriptional factors regulating directly gene expression. This is possible due to the lipophilic nature of those ligands, mainly hormones. In the signal transduction via transmembrane receptors, first messenger bind to the extracellular domain of transmembrane receptor activating it. This receptors may have intrinsic catalytic activity or may be coupled to effector enzymes, or may also be associated to ionic channels. Therefore, there are four main transmembrane receptor types: G protein coupled receptors, tyrosine kinase receptors, serine/threonine kinase receptors, and ligand-gated ion channels.
Second messengers can be classified into three classes:
- Hydrophilic/cytosolic – are soluble in water and are localized at the cytosol, including cAMP, cGMP, IP3, Ca2+, cADPR and S1P. Their main targets are protein kinases as PKA and PKG, being then involved in phosphorylation mediated responses.
- Hydrophobic/membrane-associated – are insoluble in water and membrane-associated, being localized at intermembrane spaces, where they can bind to membrane-associated effector proteins. Examples: PIP3, DAG, phosphatidic acid, arachidonic acid and ceramide. They are involved in regulation of kinases and phosphatases, G protein associated factors and transcriptional factors.
- Gaseous – can be widespread through cell membrane and cytosol, including nitric oxide and carbon monoxide. Both of them can activate cGMP and, besides of being capable of mediating independent activities, they also can operate in a coordinated mode.
Cellular response
Examples of biochemical cascades
In biochemistry, several important enzymatic cascades and signal transduction cascades participate in metabolic pathways or signaling networks, in which enzymes are usually involved to catalyze the reactions. For example, the tissue factor pathway in the coagulation cascade of secondary hemostasis is the primary pathway leading to fibrin formation, and thus, the initiation of blood coagulation. The pathways are a series of reactions, in which a zymogen of a serine protease and its glycoprotein co-factors are activated to become active components that then catalyze the next reaction in the cascade, ultimately resulting in cross-linked fibrin.Another example, sonic hedgehog signaling pathway, is one of the key regulators of embryonic development and is present in all bilaterians. Different parts of the embryo have different concentrations of hedgehog signaling proteins, which give cells information to make the embryo develop properly and correctly into a head or a tail. When the pathway malfunctions, it can result in diseases like basal cell carcinoma. Recent studies point to the role of hedgehog signaling in regulating adult stem cells involved in maintenance and regeneration of adult tissues. The pathway has also been implicated in the development of some cancers. Drugs that specifically target hedgehog signaling to fight diseases are being actively developed by a number of pharmaceutical companies. Most biochemical cascades are series of events, in which one event triggers the next, in a linear fashion.
Biochemical cascades include:
- The Complement system
- The Insulin Signaling Pathway
- The Sonic hedgehog Signaling Pathway
- The Wnt signaling pathway
- The JAK-STAT signaling pathway
- The Adrenergic receptor Pathways
- The Acetylcholine receptor Pathways
- The Mitogen-activated protein kinase cascade
- Ischemic cascade
Cell-specific biochemical cascades
Epithelial cells
is an essential process to epithelial cells so that epithelium can be formed and cells can be in permanent contact with extracellular matrix and other cells. Several pathways exist to accomplish this communication and adhesion with environment. But the main signalling pathways are the cadherin and integrin pathways.The cadherin pathway is present in adhesion junctions or in desmosomes and it is responsible for epithelial adhesion and communication with adjacent cells. Cadherin is a transmembrane glycoprotein receptor that establishes contact with another cadherin present in the surface of a neighbour cell forming an adhesion complex. This adhesion complex is formed by β-catenin and α-catenin, and p120CAS is essential for its stabilization and regulation. This complex then binds to actin, leading to polymerization. For actin polymerization through the cadherin pathway, proteins of the Rho GTPases family are also involved. This complex is regulated by phosphorylation, which leads to downregulation of adhesion. Several factors can induce the phosphorylation, like EGF, HGF or v-Src. The cadherin pathway also has an important function in survival and proliferation because it regulates the concentration of cytoplasmic β-catenin. When β-catenin is free in the cytoplasm, normally it is degraded, however if the Wnt signalling is activated, β-catenin degradation is inhibited and it is translocated to the nucleus where it forms a complex with transcription factors. This leads to activation of genes responsible for cell proliferation and survival. So the cadherin-catenin complex is essential for cell fate regulation.
Integrins are heterodimeric glycoprotein receptors that recognize proteins present in the extracellular matrix, like fibronectin and laminin. In order to function, integrins have to form complexes with ILK and Fak proteins. For adhesion to the extracellular matrix, ILK activate the Rac and Cdc42 proteins and leading to actin polymerization. ERK also leads to actin polymerization through activation of cPLA2. Recruitment of FAK by integrin leads to Akt activation and this inhibits pro-apoptotic factors like BAD and Bax. When adhesion through integrins do not occur the pro-apoptotic factors are not inhibited and resulting in apoptosis.
Hepatocytes
The hepatocyte is a complex and multifunctional differentiated cell whose cell response will be influenced by the zone in hepatic lobule, because concentrations of oxygen and toxic substances present in the hepatic sinusoids change from periportal zone to centrilobular zone10. The hepatocytes of the intermediate zone have the appropriate morphological and functional features since they have the environment with average concentrations of oxygen and other substances.This specialized cell is capable of:
- Regulate glucose metabolism
- Via cAMP/PKA/TORC /CRE, PIP3 /PKB and PLC /IP3
- Expression of enzymes for synthesis, storage and distribution of glucose
- Synthesis of acute phase proteins
- Via JAK /STAT /APRE
- Expression of C-reactive protein, globulin protease inhibitors, complement, coagulation and fibrinolytic systems and iron homeostasis
- Regulate lipid metabolism
- Exocrine production of bile salts and other compounds
- Via LXR /LXRE
- Expression of CYP7A1 and ABC transporters
- Degradate of toxic substances
- Via LXR /LXRE
- Expression of ABC transporters
- Endocrine production
- Via JAK/STAT /GHRE
- Via THR/THRE
- Regenerate itself by hepatocyte mitosis
- Via STAT and Gab1: RAS/MAPK, PLC/IP3 and PI3K/FAK
- Cell growth, proliferation, survival, invasion and motility
Neurons
has an essential role at interactions between neurons and glia cells, allowing these to detect action potentials and modulate neuronal activity, contributing for intra and extracellular homeostasis regulation. Besides purinergic neurotransmitter, ATP acts as a trophic factor at cellular development and growth, being involved on microglia activation and migration, and also on axonal myelination by oligodendrocytes. There are two main types of purinergic receptors, P1 binding to adenosine, and P2 binding to ATP or ADP, presenting different signalling cascades.The Nrf2/ARE signalling pathway has a fundamental role at fighting against oxidative stress, to which neurons are especially vulnerable due to its high oxygen consumption and high lipid content. This neuroprotective pathway involves control of neuronal activity by perisynaptic astrocytes and neuronal glutamate release, with the establishment of tripartite synapses. The Nrf2/ARE activation leads to a higher expression of enzymes involved in glutathione syntheses and metabolism, that have a key role in antioxidant response.
The LKB1/NUAK1 signalling pathway regulates terminal axon branching at cortical neurons, via local immobilized mitochondria capture. Besides NUAK1, LKB1 kinase acts under other effectors enzymes as SAD-A/B and MARK, therefore regulating neuronal polarization and axonal growth, respectively. These kinase cascades implicates also Tau and others MAP.
An extended knowledge of these and others neuronal pathways could provide new potential therapeutic targets for several neurodegenerative chronic diseases as Alzheimer's, Parkinson's and Huntington's disease, and also amyotrophic lateral sclerosis.
Blood cells
The blood cells are produced by hematopoiesis.The erythrocytes have as main function the O2 delivery to the tissues, and this transfer occurs by diffusion and is determined by the O2 tension. The erythrocyte is able to feel the tissue need for O2 and cause a change in vascular caliber, through the pathway of ATP release, which requires an increase in cAMP, and are regulated by the phosphodiesterase. This pathway can be triggered via two mechanisms: physiological stimulus and activation of the prostacyclin receptor. This pathway includes heterotrimeric G proteins, adenylyl cyclase, protein kinase A, cystic fibrosis transmembrane conductance regulator, and a final conduit that transport ATP to vascular lumen. The released ATP acts on purinergic receptors on endothelial cells, triggering the synthesis and release of several vasodilators, like nitric oxide and prostacyclin.
The current model of leukocyte adhesion cascade includes many steps mentioned in Table 1. The integrin-mediated adhesion of leukocytes to endothelial cells is related with morphological changes in both leukocytes and endothelial cells, which together support leukocyte migration through the venular walls. Rho and Ras small GTPases are involved in the principal leukocyte signaling pathways underlying chemokine-stimulated integrin-dependent adhesion, and have important roles in regulating cell shape, adhesion and motility.
After a vascular injury occurs, platelets are activated by locally exposed collagen, locally generated thrombin, platelet-derived thromboxane A2 and ADP that is either released from damaged cells or secreted from platelet dense granules. The von Willebrand factor serves as an essential accessory molecule. In general terms, platelet activation initiated by agonist takes to a signaling cascade that leads to an increase of the cytosolic calcium concentration. Consequently, the integrin αIIbβ3 is activated and the binding to fibrinogen allows the aggregation of platelets to each other. The increase of cytosolic calcium also leads to shape change and TxA2 synthesis, leading to signal amplification.
Lymphocytes
The main goal of biochemical cascades in lymphocytes is the secretion of molecules that can suppress altered cells or eliminate pathogenic agents, through proliferation, differentiation and activation of these cells. Therefore, the antigenic receptors play a central role in signal transduction in lymphocytes, because when antigens interact with them lead to a cascade of signal events. These receptors, that recognize the antigen soluble or linked to a molecule on Antigen Presenting Cells, do not have long cytoplasm tails, so they are anchored to signal proteins, which contain a long cytoplasmic tails with a motif that can be phosphorylated and resulting in different signal pathways. The antigen receptor and signal protein form a stable complex, named BCR or TCR, in B or T cells, respectively. The family Src is essential for signal transduction in these cells, because it is responsible for phosphorylation of ITAMs. Therefore, Lyn and Lck, in lymphocytes B and T, respectively, phosphorylate immunoreceptor tyrosine-based activation motifs after the antigen recognition and the conformational change of the receptor, which leads to the binding of Syk/Zap-70 kinases to ITAM and its activation. Syk kinase is specific of lymphocytes B and Zap-70 is present in T cells. After activation of these enzymes, some adaptor proteins are phosphorylated, like BLNK and LAT. These proteins after phosphorylation become activated and allow binding of others enzymes that continue the biochemical cascade. One example of a protein that binds to adaptor proteins and become activated is PLC that is very important in the lymphocyte signal pathways. PLC is responsible for PKC activation, via DAG and Ca2+, which leads to phosphorylation of CARMA1 molecule, and formation of CBM complex. This complex activates Iκκ kinase, which phosphorylates I-κB, and then allows the translocation of NF-κB to the nucleus and transcription of genes encoding cytokines, for example. Others transcriptional factors like NFAT and AP1 complex are also important for transcription of cytokines. The differentiation of B cells to plasma cells is also an example of a signal mechanism in lymphocytes, induced by a cytokine receptor. In this case, some interleukins bind to a specific receptor, which leads to activation of MAPK/ERK pathway. Consequently, the BLIMP1 protein is translated and inhibits PAX5, allowing immunoglobulin genes transcription and activation of XBP1. Also, the coreceptors play an important role because they can improve the antigen/receptor binding and initiate parallel cascade events, like activation o PI3 Kinase. PIP3 then is responsible for activation of several proteins, like vav and btk.Bones
Wnt signaling pathway
The Wnt signaling pathway can be divided in canonical and non-canonical. The canonical signaling involves binding of Wnt to Frizzled and LRP5 co-receptor, leading to GSK3 phosphorylation and inhibition of β-catenin degradation, resulting in its accumulation and translocation to the nucleus, where it acts as a transcription factor. The non-canonical Wnt signaling can be divided in planar cell polarity pathway and Wnt/calcium pathway. It is characterized by binding of Wnt to Frizzled and activation of G proteins and to an increase of intracellular levels of calcium through mechanisms involving PKC 50. The Wnt signaling pathway plays a significative role in osteoblastogenesis and bone formation, inducing the differentiation of mesenquimal pluripotent cells in osteoblasts and inhibiting the RANKL/RANK pathway and osteoclastogenesis.RANKL/RANK signaling pathway
RANKL is a member of the TNF superfamily of ligands. Through binding to the RANK receptor it activates various molecules, like NF-kappa B, MAPK, NFAT and PI3K52. The RANKL/RANK signaling pathway regulates osteoclastogenesis, as well as, the survival and activation of osteoclasts.Adenosine signaling pathway
Adenosine is very relevant in bone metabolism, as it plays a role in formation and activation of both osteoclasts and osteoblasts. Adenosine acts by binding to purinergic receptors and influencing adenylyl cyclase activity and the formation of cAMP and PKA 54. Adenosine may have opposite effects on bone metabolism, because while certain purinergic receptors stimulate adenylyl cyclase activity, others have the opposite effect. Under certain circumstances adenosine stimulates bone destruction and in other situations it promotes bone formation, depending on the purinergic receptor that is being activated.Stem cells
Self-renewal and differentiation abilities are exceptional properties of stem cells. These cells can be classified by their differentiation capacity, which progressively decrease with development, in totipotents, pluripotents, multipotents and unipotents.Self-renewal process is highly regulated from cell cycle and genetic transcription control. There are some signaling pathways, such as LIF/JAK/STAT3 and BMP/SMADs/Id, mediated by transcription factors, epigenetic regulators and others components, and they are responsible for self-renewal genes expression and inhibition of differentiation genes expression, respectively.
At cell cycle level there is an increase of complexity of the mechanisms in somatic stem cells. However, it is observed a decrease of self-renewal potential with age. These mechanisms are regulated by p16Ink4a-CDK4/6-Rb and p19Arf-p53-P21Cip1 signaling pathways. Embryonic stem cells have constitutive cyclin E-CDK2 activity, which hyperphosphorylates and inactivates Rb. This leads to a short G1 phase of the cell cycle with rapid G1-S transition and little dependence on mitogenic signals or D cyclins for S phase entry. In fetal stem cells, mitogens promote a relatively rapid G1-S transition through cooperative action of cyclin D-CDK4/6 and cyclin E-CDK2 to inactivate Rb family proteins. p16Ink4a and p19Arf expression are inhibited by Hmga2-dependent chromatin regulation. Many young adult stem cells are quiescent most of the time. In the absence of mitogenic signals, cyclin-CDKs and the G1-S transition are suppressed by cell cycle inhibitors including Ink4 and Cip/Kip family proteins. As a result, Rb is hypophosphorylated and inhibits E2F, promoting quiescence in G0-phase of the cell cycle. Mitogen stimulation mobilizes these cells into cycle by activating cyclin D expression. In old adult stem cells, let-7 microRNA expression increases, reducing Hmga2 levels and increasing p16Ink4a and p19Arf levels. This reduces the sensitivity of stem cells to mitogenic signals by inhibiting cyclin-CDK complexes. As a result, either stem cells cannot enter the cell cycle, or cell division slows in many tissues.
Extrinsic regulation is made by signals from the niche, where stem cells are found, which is able to promote quiescent state and cell cycle activation in somatic stem cells. Asymmetric division is characteristic of somatic stem cells, maintaining the reservoir of stem cells in the tissue and production of specialized cells of the same.
Stem cells show an elevated therapeutic potential, mainly in hemato-oncologic pathologies, such as leukemia and lymphomas. Little groups of stem cells were found into tumours, calling cancer stem cells. There are evidences that these cells promote tumor growth and metastasis.
Oocytes
The oocyte is the female cell involved in reproduction. There is a close relationship between the oocyte and the surrounding follicular cells which is crucial to the development of both. GDF9 and BMP15 produced by the oocyte bind to BMPR2 receptors on follicular cells activating SMADs 2/3, ensuring follicular development. Concomitantly, oocyte growth is initiated by binding of KITL to its receptor KIT in the oocyte, leading to the activation of PI3K/Akt pathway, allowing oocyte survival and development. During embryogenesis, oocytes initiate meiosis and stop in prophase I. This arrest is maintained by elevated levels of cAMP within the oocyte. It was recently suggested that cGMP cooperates with cAMP to maintain the cell cycle arrest. During meiotic maturation, the LH peak that precedes ovulation activates MAPK pathway leading to gap junction disruption and breakdown of communication between the oocyte and the follicular cells. PDE3A is activated and degrades cAMP, leading to cell cycle progression and oocyte maturation. The LH surge also leads to the production of progesterone and prostaglandins that induce the expression of ADAMTS1 and other proteases, as well as their inhibitors. This will lead to degradation of the follicular wall, but limiting the damage and ensuring that the rupture occurs in the appropriate location, releasing the oocyte into the Fallopian tubes. Oocyte activation depends on fertilization by sperm. It is initiated with sperm's attraction induced by prostaglandins produced by the oocyte, which will create a gradient that will influence the sperm's direction and velocity. After fusion with the oocyte, PLC ζ of the spermatozoa is released into the oocyte leading to an increase in Ca2+ levels that will activate CaMKII which will degrade MPF, leading to the resumption of meiosis. The increased Ca2+ levels will induce the exocytosis of cortical granules that degrade ZP receptors, used by sperm to penetrate the oocyte, blocking polyspermy. Deregulation of these pathways will lead to several diseases like, oocyte maturation failure syndrome which results in infertility. Increasing our molecular knowledge of oocyte development mechanisms could improve the outcome of assisted reproduction procedures, facilitating conception.Spermatozoon
is the male gamete. After ejaculation this cell is not mature, so it can not fertilize the oocyte. To have the ability to fertilize the female gamete, this cell suffers capacitation and acrosome reaction in female reproductive tract. The signaling pathways best described for spermatozoon involve these processes. The cAMP/PKA signaling pathway leads to sperm cells capacitation; however, adenylyl cyclase in sperm cells is different from the somatic cells. Adenylyl cyclase in spermatozoon does not recognize G proteins, so it is stimulated by bicarbonate and Ca2+ ions. Then, it converts adenosine triphosphate into cyclic AMP, which activates Protein kinase A. PKA leads to protein tyrosine phosphorylation.Phospholipase C is involved in acrosome reaction. ZP3 is a glycoprotein present in zona pelucida and it interacts with receptors in spermatozoon. So, ZP3 can activate G protein coupled receptors and tyrosine kinase receptors, that leads to production of PLC. PLC cleaves the phospholipid phosphatidylinositol 4,5-bisphosphate into diacyl glycerol and inositol 1,4,5-trisphosphate. IP3 is released as a soluble structure into the cytosol and DAG remains bound to the membrane. IP3 binds to IP3 receptors, present in acrosome membrane. In addition, calcium and DAG together work to activate protein kinase C, which goes on to phosphorylate other molecules, leading to altered cellular activity. These actions cause an increase in cytosolic concentration of Ca2+ that leads to dispersion of actin and consequently promotes plasmatic membrane and outer acrosome membrane fusion.
Progesterone is a steroid hormone produced in cumulus oophorus. In somatic cells it binds to receptors in nucleus; however, in spermatozoon its receptors are present in plasmatic membrane. This hormone activates AKT that leads to activation of other protein kinases, involved in capacitation and acrosome reaction.
When ROS are present in high concentration, they can affect the physiology of cells, but when they are present in moderated concentration they are important for acrosome reaction and capacitation. ROS can interact with cAMP/PKA and progesterone pathway, stimulating them. ROS also interacts with ERK pathway that leads to activation of Ras, MEK and MEK-like proteins. These proteins activate protein tyrosine kinase that phosphorylates various proteins important for capacitation and acrosome reaction.
Embryos
Various signalling pathways, as FGF, WNT and TGF-β pathways, regulate the processes involved in embryogenesis.FGF ligands bind to receptors tyrosine kinase, FGFR, and form a stable complex with co-receptors HSPG that will promote autophosphorylation of the intracellular domain of FGFR and consequent activation of four main pathways: MAPK/ERK, PI3K, PLCγ and JAK/STAT.
- MAPK/ERK regulates gene transcription through successive kinase phosphorylation and in human embryonic stem cells it helps maintaining pluripotency. However, in the presence of Activin A, a TGF-β ligand, it causes the formation of mesoderm and neuroectoderm.
- Phosphorylation of membrane phospholipids by PI3K results in activation of AKT/PKB. This kinase is involved in cell survival and inhibition of apoptosis, cellular growth and maintenance of pluripotency, in embryonic stem cells.
- PLCγ hydrolyzes membrane phospholipids to form IP3 and DAG, leading to activation of kinases and regulating morphogenic movements during gastrulation and neurulation.
- STAT is phosphorylated by JAK and regulates gene transcription, determining cell fates. In mouse embryonic stem cells, this pathway helps maintaining pluripotency.
In TGF-β pathway, BMP, Activin and Nodal ligands bind to their receptors and activate Smads that bind to DNA and promote gene transcription. Activin is necessary for mesoderm and specially endoderm differentiation, and Nodal and BMP are involved in embryo patterning. BMP is also responsible for formation of extra-embryonic tissues before and during gastrulation, and for early mesoderm differentiation, when Activin and FGF pathways are activated.
Pathway construction
Pathway building has been performed by individual groups studying a network of interest as well as by large bioinformatics consortia and commercial entities. Pathway building is the process of identifying and integrating the entities, interactions, and associated annotations, and populating the knowledge base. Pathway construction can have either a data-driven objective or a knowledge-driven objective. Data-driven pathway construction is used to generate relationship information of genes or proteins identified in a specific experiment such as a microarray study. Knowledge-driven pathway construction entails development of a detailed pathway knowledge base for particular domains of interest, such as a cell type, disease, or system. The curation process of a biological pathway entails identifying and structuring content, mining information manually and/or computationally, and assembling a knowledgebase using appropriate software tools. A schematic illustrating the major steps involved in the data-driven and knowledge-driven construction processes.For either DDO or KDO pathway construction, the first step is to mine pertinent information from relevant information sources about the entities and interactions. The information retrieved is assembled using appropriate formats, information standards, and pathway building tools to obtain a pathway prototype. The pathway is further refined to include context-specific annotations such as species, cell/tissue type, or disease type. The pathway can then be verified by the domain experts and updated by the curators based on appropriate feedback. Recent attempts to improve knowledge integration have led to refined classifications of cellular entities, such as GO, and to the assembly of structured knowledge repositories. Data repositories, which contain information regarding sequence data, metabolism, signaling, reactions, and interactions are a major source of information for pathway building. A few useful databases are described in the following table.
Database | Curation Type | GO Annotation | Description | - |
1. Protein-protein interactions databases | - | - | - | |
Manual Curation | N | 200,000 documented biomolecular interactions and complexes | ||
Manual Curation | N | Experimentally verified interactions | ||
Manual Curation | N | Elegant and comprehensive presentation of the interactions, entities and evidences | ||
Manual and Automated Curation | N | Yeast interactions. A part of MIPS | ||
Manual and Automated Curation | Y | Experimentally determined interactions | ||
Manual Curation | Y | Database and analysis system of binary and multi-protein interactions | ||
Manual Curation | N | PDZ Domain containing proteins | ||
Manual and Automated Curation | Y | Based on specific experiments and literature | ||
Manual Curation | Y | Physical and genetic interactions | ||
Manual and Automated Curation | Y | Comprehensive human protein interactions | ||
Manual Curation | Y | Combines PPI from BIND, HPRD, and MINT | ||
2. Metabolic Pathway databases | - | - | - | |
Manual and Automated Curation | Y | Entire genome and biochemical machinery of E. Coli | ||
Manual Curation | N | Pathways of over 165 species | ||
Manual and Automated Curation | N | Human metabolic pathways and the human genome | ||
Manual and Automated Curation | N | Collection of databases for several organism | ||
3. Signaling Pathway databases | - | - | - | |
Manual Curation | Y | Comprehensive collection of pathways such as human disease, signaling, genetic information processing pathways. Links to several useful databases | ||
Manual Curation | N | Compendium of metabolic and signaling pathways built using CellDesigner. Pathways can be downloaded in SBML format | ||
Manual Curation | Y | Hierarchical layout. Extensive links to relevant databases such as NCBI, ENSEMBL, UNIPROT, HAPMAP, KEGG, CHEBI, PubMed, GO. Follows PSI-MI standards | ||
Manual Curation | Y | Domain experts curated biological connection maps and associated mathematical models | ||
Manual Curation | N | Repository of canonical pathways | ||
Manual Curation | Y | Commercial mammalian biological knowledgebase about genes, drugs, chemical, cellular and disease processes, and signaling and metabolic pathways | ||
Manual Curation | Y | Literature-curated human signaling network, the largest human signaling network database | ||
Manual Curation | Y | Compendium of several highly structured, assembled signaling pathways | ||
BioPP | Manual and Automated Curation | Y | Repository of biological pathways built using CellDesigner |
Legend: Y – Yes, N – No; BIND – Biomolecular Interaction Network Database, DIP – Database of Interacting Proteins, GNPV – Genome Network Platform Viewer, HPRD = Human Protein Reference Database, MINT – Molecular Interaction database, MIPS – Munich Information center for Protein Sequences, UNIHI – Unified Human Interactome, OPHID – Online Predicted Human Interaction Database, EcoCyc – Encyclopaedia of E. Coli Genes and Metabolism, MetaCyc – aMetabolic Pathway database, KEGG – Kyoto Encyclopedia of Genes and Genomes, PANTHER – Protein Analysis Through Evolutionary Relationship database, STKE – Signal Transduction Knowledge Environment, PID – The Pathway Interaction Database, BioPP – Biological Pathway Publisher. A comprehensive list of resources can be found at http://www.pathguide.org.
Pathway-related databases and tools
KEGG
The increasing amount of genomic and molecular information is the basis for understanding higher-order biological systems, such as the cell and the organism, and their interactions with the environment, as well as for medical, industrial and other practical applications. The KEGG resource provides a reference knowledge base for linking genomes to biological systems, categorized as building blocks in the genomic space, the chemical space, wiring diagrams of interaction networks and reaction networks, and ontologies for pathway reconstruction.The KEGG PATHWAY database is a collection of manually drawn pathway maps for metabolism, genetic information processing, environmental information processing such as signal transduction, ligand–receptor interaction and cell communication, various other cellular processes and human diseases, all based on extensive survey of published literature.