If the bundle :P → M is a principal fiber bundle with group G, and G is a compact Lie group, then there exists an Ad-invariant inner product k on the fibers, taken from the inner product on the corresponding compact Lie algebra. More precisely, there is a metric tensor k defined on the vertical bundle E = VP such that k is invariant under left-multiplication: for vertical vectors X, Y and Lg is left-multiplication by g along the fiber, and Lg* is the pushforward. That is, E is the vector bundle that consists of the vertical subspace of the tangent of the principal bundle. More generally, whenever one has a compact group with Haar measure μ, and an arbitrary inner product h defined at the tangent space of some point in G, one can define an invariant metric simply by averaging over the entire group, i.e. by defining as the average. The above notion can be extended to the associated bundle where V is a vector space transforming covariantly under some representation of G.
If the base space M is also a metric space, with metric g, and the principal bundle is endowed with a connection form ω, then *g+kω is a metric defined on the entire tangent bundle E = TP. More precisely, one writes *g = g where * is the pushforward of the projection, and g is the metric tensor on the base space M. The expression kω should be understood as = k,ω), with k the metric tensor on each fiber. Here, X and Y are elements of the tangent space TP. Observe that the lift *g vanishes on the vertical subspace TV, while kω vanishes on the horizontal subspace TH. Since the total tangent space of the bundle is a direct sum of the vertical and horizontal subspaces, this metric is well-defined on the entire bundle. This bundle metric underpins the generalized form of Kaluza–Klein theory due to several interesting properties that it possesses. The scalar curvature derived from this metric is constant on each fiber, this follows from the Ad invariance of the fiber metric k. The scalar curvature on the bundle can be decomposed into three distinct pieces: where RE is the scalar curvature on the bundle as a whole, and RM is the scalar curvature on the base manifoldM, and L is the Lagrangian density for the Yang–Mills action, and RG is the scalar curvature on each fibre. The arguments denote that RM only depends on the metric g on the base manifold, but not ω or k, and likewise, that RG only depends on k, and not on g or ω, and so-on.