Cadmium poisoning


is a naturally occurring toxic metal with common exposure in industrial workplaces, plant soils, and from smoking. Due to its low permissible exposure in humans, overexposure may occur even in situations where trace quantities of cadmium are found. Cadmium is used extensively in electroplating, although the nature of the operation does not generally lead to overexposure. Cadmium is also found in some industrial paints and may represent a hazard when sprayed. Operations involving removal of cadmium paints by scraping or blasting may pose a significant hazard. The primary use of cadmium is in the manufacturing of NiCd rechargeable batteries. The primary source for cadmium is as a byproduct of refining zinc metal. Exposures to cadmium are addressed in specific standards for the general industry, shipyard employment, the construction industry, and the agricultural industry.

Mechanism

Cadmium is an extremely toxic industrial and environmental pollutant classified as a human carcinogen Group 1 – according to [International Agency for Research on Cancer; Group 2a – according to Environmental Protection Agency ; and 1B carcinogen classified by European Chemical Agency
Acute exposure to cadmium fumes may cause flu-like symptoms including chills, fever, and muscle ache sometimes referred to as "the cadmium blues." Symptoms may resolve after a week if there is no respiratory damage. More severe exposures can cause tracheo-bronchitis, pneumonitis, and pulmonary edema. Symptoms of inflammation may start hours after the exposure and include cough, dryness and irritation of the nose and throat, headache, dizziness, weakness, fever, chills, and chest pain.
Inhaling cadmium-laden dust quickly leads to respiratory tract and kidney problems which can be fatal. Ingestion of any significant amount of cadmium causes immediate poisoning and damage to the liver and the kidneys. Compounds containing cadmium are also carcinogenic.
The bones become soft, lose bone mineral density and become weaker. This causes pain in the joints and the back, and also increases the risk of fractures. In extreme cases of cadmium poisoning, mere body weight causes a fracture.
The kidneys lose their function to remove acids from the blood in proximal renal tubular dysfunction. The kidney damage inflicted by cadmium poisoning is irreversible. The proximal renal tubular dysfunction creates low phosphate levels in the blood, causing muscle weakness and sometimes coma. The dysfunction also causes gout, a form of arthritis due to the accumulation of uric acid crystals in the joints because of high acidity of the blood. Another side effect is increased levels of chloride in the blood. The kidneys can also shrink up to 30%. Cadmium exposure is also associated with the development of kidney stones.
Similar to zinc, long term exposure to cadmium fumes can cause life long anosmia.
Inside cells, cadmium ions act as a catalytic hydrogen peroxide generator. This sudden surge of cytosolic hydrogen peroxide causes increased lipid peroxidation and additionally depletes ascorbate and glutathione stores. Hydrogen peroxide can also convert thiol groups on proteins into nonfunctional sulfonic acids and is also capable of directly attacking nuclear DNA. This oxidative stress causes the afflicted cell to manufacture large amounts of inflammatory cytokines.

Biomarkers of excessive exposure

Increased concentrations of urinary beta-2 microglobulin can be an early indicator of kidney dysfunction in persons chronically exposed to low but excessive levels of environmental cadmium. The urinary beta-2 microglobulin test is an indirect method of measuring cadmium exposure. Under some circumstances, the Occupational Health and Safety Administration requires screening for kidney damage in workers with long-term exposure to high levels of cadmium. Blood or urine cadmium concentrations provide a better index of excessive exposure in industrial situations or following acute poisoning, whereas organ tissue cadmium concentrations may be useful in fatalities resulting from either acute or chronic poisoning. Cadmium concentrations in healthy persons without excessive cadmium exposure are generally less than 1 μg/L in either blood or urine. The ACGIH biological exposure indices for blood and urine cadmium levels are 5 μg/L and 5 μg/g creatinine, respectively, in random specimens. Persons who have sustained kidney damage due to chronic cadmium exposure often have blood or urine cadmium levels in a range of 25-50 μg/L or 25-75 μg/g creatinine, respectively. These ranges are usually 1000-3000 μg/L and 100-400 μg/g, respectively, in survivors of acute poisoning and may be substantially higher in fatal cases.

Treatment

For a single exposure by ingestion, gastric decontamination by emesis or gastric lavage may be beneficial soon after exposure. Administration of activated charcoal has not been proven effective. Chelation therapies to remove cadmium are not effective, so the most important action is to prevent additional exposure.

China

Farmland governed by Xinxiang municipality was also noted for by leading China news site Caixin as the epicenter of Chinese battery producers. However the pollution spreads much farther as it enters the food chain through key crops like wheat and rice.

Footnotes

*