Capital asset pricing model


In finance, the capital asset pricing model is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified portfolio.

Overview

The model takes into account the asset's sensitivity to non-diversifiable risk, often represented by the quantity beta in the financial industry, as well as the expected return of the market and the expected return of a theoretical risk-free asset. CAPM assumes a particular form of utility functions or alternatively asset returns whose probability distributions are completely described by the first two moments and zero transaction costs. Under these conditions, CAPM shows that the cost of equity capital is determined only by beta. Despite it failing numerous empirical tests, and the existence of more modern approaches to asset pricing and portfolio selection, the CAPM still remains popular due to its simplicity and utility in a variety of situations.

Inventors

The CAPM was introduced by Jack Treynor, William F. Sharpe, John Lintner and Jan Mossin independently, building on the earlier work of Harry Markowitz on diversification and modern portfolio theory. Sharpe, Markowitz and Merton Miller jointly received the 1990 Nobel Memorial Prize in Economics for this contribution to the field of financial economics. Fischer Black developed another version of CAPM, called Black CAPM or zero-beta CAPM, that does not assume the existence of a riskless asset. This version was more robust against empirical testing and was influential in the widespread adoption of the CAPM.

Formula

The CAPM is a model for pricing an individual security or portfolio. For individual securities, we make use of the security market line and its relation to expected return and systematic risk to show how the market must price individual securities in relation to their security risk class. The SML enables us to calculate the reward-to-risk ratio for any security in relation to that of the overall market. Therefore, when the expected rate of return for any security is deflated by its beta coefficient, the reward-to-risk ratio for any individual security in the market is equal to the market reward-to-risk ratio, thus:
The market reward-to-risk ratio is effectively the market risk premium and by rearranging the above equation and solving for, we obtain the capital asset pricing model.
where:
Restated, in terms of risk premium, we find that:
which states that the individual risk premium equals the market premium times β.
Note 1: the expected market rate of return is usually estimated by measuring the arithmetic average of the historical returns on a market portfolio.
Note 2: the risk free rate of return used for determining the risk premium is usually the arithmetic average of historical risk free rates of return and not the current risk free rate of return.
For the full derivation see Modern portfolio theory.

Modified Betas">Beta (finance)">Betas

There has also been research into a mean-reverting beta often referred to as the adjusted beta, as well as the consumption beta. However, in empirical tests the traditional CAPM has been found to do as well as or outperform the modified beta models.

Security market line

The SML essentially graphs the results from the capital asset pricing model formula. The x-axis represents the risk, and the y-axis represents the expected return. The market risk premium is determined from the slope of the SML.
The relationship between β and required return is plotted on the securities market line, which shows expected return as a function of β. The intercept is the nominal risk-free rate available for the market, while the slope is the market premium, E− Rf. The securities market line can be regarded as representing a single-factor model of the asset price, where Beta is exposure to changes in value of the Market. The equation of the SML is thus:
It is a useful tool in determining if an asset being considered for a portfolio offers a reasonable expected return for risk. Individual securities are plotted on the SML graph. If the security's expected return versus risk is plotted above the SML, it is undervalued since the investor can expect a greater return for the inherent risk. And a security plotted below the SML is overvalued since the investor would be accepting less return for the amount of risk assumed.

Asset pricing

Once the expected/required rate of return is calculated using CAPM, we can compare this required rate of return to the asset's estimated rate of return over a specific investment horizon to determine whether it would be an appropriate investment. To make this comparison, you need an independent estimate of the return outlook for the security based on either fundamental or technical analysis techniques, including P/E, M/B etc.
Assuming that the CAPM is correct, an asset is correctly priced when its estimated price is the same as the present value of future cash flows of the asset, discounted at the rate suggested by CAPM. If the estimated price is higher than the CAPM valuation, then the asset is undervalued. When the asset does not lie on the SML, this could also suggest mis-pricing. Since the expected return of the asset at time is, a higher expected return than what CAPM suggests indicates that is too low, assuming that at time the asset returns to the CAPM suggested price.
The asset price using CAPM, sometimes called the certainty equivalent pricing formula, is a linear relationship given by
where is the payoff of the asset or portfolio.

Asset-specific required return

The CAPM returns the asset-appropriate required return or discount rate—i.e. the rate at which future cash flows produced by the asset should be discounted given that asset's relative riskiness.
Betas exceeding one signify more than average "riskiness"; betas below one indicate lower than average. Thus, a more risky stock will have a higher beta and will be discounted at a higher rate; less sensitive stocks will have lower betas and be discounted at a lower rate. Given the accepted concave utility function, the CAPM is consistent with intuition—investors require a higher return for holding a more risky asset.
Since beta reflects asset-specific sensitivity to non-diversifiable, i.e. market risk, the market as a whole, by definition, has a beta of one. Stock market indices are frequently used as local proxies for the market—and in that case have a beta of one. An investor in a large, diversified portfolio, therefore, expects performance in line with the market.

Risk and diversification

The risk of a portfolio comprises systematic risk, also known as undiversifiable risk, and unsystematic risk which is also known as idiosyncratic risk or diversifiable risk. Systematic risk refers to the risk common to all securities—i.e. market risk. Unsystematic risk is the risk associated with individual assets. Unsystematic risk can be diversified away to smaller levels by including a greater number of assets in the portfolio. The same is not possible for systematic risk within one market. Depending on the market, a portfolio of approximately 30–40 securities in developed markets such as the UK or US will render the portfolio sufficiently diversified such that risk exposure is limited to systematic risk only. In developing markets a larger number is required, due to the higher asset volatilities.
A rational investor should not take on any diversifiable risk, as only non-diversifiable risks are rewarded within the scope of this model. Therefore, the required return on an asset, that is, the return that compensates for risk taken, must be linked to its riskiness in a portfolio context—i.e. its contribution to overall portfolio riskiness—as opposed to its "stand alone risk". In the CAPM context, portfolio risk is represented by higher variance i.e. less predictability. In other words, the beta of the portfolio is the defining factor in rewarding the systematic exposure taken by an investor.

Efficient frontier

The CAPM assumes that the risk-return profile of a portfolio can be optimized—an optimal portfolio displays the lowest possible level of risk for its level of return. Additionally, since each additional asset introduced into a portfolio further diversifies the portfolio, the optimal portfolio must comprise every asset, with each asset value-weighted to achieve the above. All such optimal portfolios, i.e., one for each level of return, comprise the efficient frontier.
Because the unsystematic risk is diversifiable, the total risk of a portfolio can be viewed as beta.

Assumptions

All investors:
  1. Aim to maximize economic utilities.
  2. Are rational and risk-averse.
  3. Are broadly diversified across a range of investments.
  4. Are price takers, i.e., they cannot influence prices.
  5. Can lend and borrow unlimited amounts under the risk free rate of interest.
  6. Trade without transaction or taxation costs.
  7. Deal with securities that are all highly divisible into small parcels.
  8. Have homogeneous expectations.
  9. Assume all information is available at the same time to all investors.

    Problems

In their 2004 review, economists Eugene Fama and Kenneth French argue that "the failure of the CAPM in empirical tests implies that most applications of the model are invalid".