Caramel color
Caramel color or caramel coloring is a water-soluble food coloring. It is made by heat treatment of carbohydrates, in general in the presence of acids, alkalis, or salts, in a process called caramelization. It is more fully oxidized than caramel candy, and has an odor of burnt sugar and a somewhat bitter taste. Its color ranges from pale yellow to amber to dark brown.
Caramel color is one of the oldest and most widely used food colorings for enhancing naturally occurring colors, correcting natural variations in color, and replacing color that is lost to light degradation during food processing and storage. The use of caramel color as a food additive in the brewing industry in the 19th century is the first recorded instance of it being manufactured and used on a wide scale. Today, caramel color is found in many commercially produced foods and beverages, including batters, beer, brown bread, buns, chocolate, cookies, cough drops, spirits and liquor such as brandy, rum, and whisky, chocolate-flavored confectionery and coatings, custards, decorations, fillings and toppings, potato chips, dessert mixes, doughnuts, fish and shellfish spreads, frozen desserts, fruit preserves, glucose tablets, gravy, ice cream, pickles, sauces and dressings, soft drinks, sweets, vinegar, and more. Caramel color is widely approved for use in food globally but application and use level restrictions vary by country.
Production
Caramel color is manufactured by heating carbohydrates, either alone or in the presence of acids, alkalis, and/or salts.Caramel colour is also produced by treating sugar with ammonia and/or sulfites. Caramel color is produced from commercially available nutritive sweeteners consisting of fructose, dextrose, invert sugar, sucrose, malt syrup, molasses, starch hydrolysates, and fractions thereof. The acids that may be used are sulfuric, sulfurous, phosphoric, acetic, and citric acids; the alkalis are ammonium, sodium, potassium, and calcium hydroxides; and the salts are ammonium, sodium, and potassium carbonate, bicarbonate, phosphate, sulfate, and bisulfite. Antifoaming agents, such as polyglycerol esters of fatty acids, may be used as processing aids during manufacture. Its color ranges from pale-yellow to amber to dark-brown.Caramel color molecules carry either a positive or a negative charge depending upon the reactants used in their manufacture. Problems such as precipitation, flocculation, or migration can be eliminated with the use of a properly charged caramel color for the intended application.
Classification
Internationally, the United Nations Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives recognizes four classes of caramel color, differing by the reactants used in their manufacture, each with its own INS and E number, listed in the table below. Each class consists of a variety of caramels with their own unique properties that make it suitable for use in specific foods and/or beverages.Class | INS / E number | Description | Properties, qualities, & benefits | Used in |
I | 150a / E150a | Plain caramel, caustic caramel, spirit caramel | Strong aftertaste and mild aroma; color ranges from yellow to red; stable in alcohol, tannin, and salt-rich environments | Whiskey and other high proof alcohols, pet food, cookies, crackers, cereal bars, other baked goods, lemonade products, juice concentrates, and cocoa extenders |
II | 150b / E150b | Caustic sulfite caramel | Mild flavor and aroma; exceptional red tone; good stability in alcohol | Tea, wine, rum, whiskey, brandy, cognac, sherry, some vinegars, light cake mixes, and other snack foods |
III | 150c / E150c | Ammonia caramel, baker's caramel, confectioner's caramel, beer caramel | Sweet aroma; red-brown color; stable in alcohol and salt-rich environments | Beer, cereal, pet food, licorice, confectionery, and gravy, soy, and BBQ sauce |
IV | 150d / E150d | Sulfite ammonia caramel, acid-proof caramel, soft-drink caramel | Very mild flavor and aroma; rich dark brown color; stable in alcohol, tannin, and acid-rich environments | Soft drinks and other carbonated beverages, balsamic vinegar, coffee, chocolate syrups, baked goods, cocoa extenders, pet foods, sauces, soups, meat rubs, seasoning blends, and other flavorings |
Color
Color intensity is defined as the absorbance of a 1 mg/mL solution in water, measured using a 1 cm light path at a wavelength of 610 nanometers. In this case, A stands for absorbance and TS stands for total solids.The color tone of the caramel color is also important. This is defined by the Linner Hue Index, which is the measure of the color hue or red characteristics of the caramel color. It is a function of the absorbance of light of wavelengths 510 and 610 nm. In general, the higher the Tinctorial Power, K0.56, the lower the Hue Index and the lower the red tones.
Various other indices are in use around the world and there are conversion factors between them.
Additional function
Caramel color is a colloid. Though the primary function of caramel color is for coloration, it also serves additional functions. In soft drinks, it can function as an emulsifier to help inhibit the formation of certain types of "floc" and its light protective quality can aid in preventing oxidation of the flavoring components in bottled beverages.Safety
Internationally, JECFA has set the Acceptable Daily Intake of Class I caramel color as "not specified"; that of Class II as 0–160 mg/kg body weight; and that of Class III & IV as 0–200 mg/kg body weight.The United States Food and Drug Administration classifies and regulates caramel color in as an approved color additive exempt from certification. Unless a food has a standard of identity, caramel color may be safely used in foods generally at levels consistent with "good manufacturing practice".
Caramel color has excellent microbiological stability. Since it is manufactured under very high temperature, high acidity, high pressure, and high specific gravity, it is essentially sterile, as it will not support microbial growth unless in a dilute solution.
When reacted with sulfites, caramel color may retain traces of sulfite after processing. However, in finished food products, labeling is usually required only for sulfite levels above 10 ppm.