Catmull–Clark subdivision surface


The Catmull–Clark algorithm is a technique used in 3D computer graphics to create smooth surfaces by using a type of subdivision surface modeling. It was devised by Edwin Catmull and Jim Clark in 1978 as a generalization of bi-cubic uniform B-spline surfaces to arbitrary topology. In 2005, Edwin Catmull received an Academy Award for Technical Achievement, together with Tony DeRose and Jos Stam.

Recursive evaluation

Catmull–Clark surfaces are defined recursively, using the following refinement scheme:
Start with a mesh of an arbitrary polyhedron. All the vertices in this mesh shall be called original points.
The new mesh will consist only of quadrilaterals, which in general will not be planar. The new mesh will generally look smoother than the old mesh.
Repeated subdivision results in smoother meshes. It can be shown that the limit surface obtained by this refinement process is at least at extraordinary vertices and everywhere else. After one iteration, the number of extraordinary points on the surface remains constant.
The arbitrary-looking barycenter formula was chosen by Catmull and Clark based on the aesthetic appearance of the resulting surfaces rather than on a mathematical derivation, although Catmull and Clark do go to great lengths to rigorously show that the method converges to bicubic B-spline surfaces.

Exact evaluation

The limit surface of Catmull–Clark subdivision surfaces can also be evaluated directly, without any recursive refinement. This can be accomplished by means of the technique of Jos Stam. This method reformulates the recursive refinement process into a matrix exponential problem, which can be solved directly by means of matrix diagonalization.

Software using Catmull–Clark subdivision surfaces