Centrifuge


A centrifuge is a piece of equipment that puts an object in rotation around a fixed axis, applying a force perpendicular to the axis of spin that can be very strong. The centrifuge works using the sedimentation principle, where the centrifugal acceleration causes denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and move to the center. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top.
There are three types of centrifuge designed for different applications. Industrial scale centrifuges are commonly used in manufacturing and waste processing to sediment suspended solids, or to separate immiscible liquids. An example is the cream separator found in dairies. Very high speed centrifuges and ultracentrifuges able to provide very high accelerations can separate fine particles down to the nano-scale, and molecules of different masses.
Large centrifuges are used to simulate high gravity or acceleration environments. Medium-sized centrifuges are used in washing machines and at some swimming pools to draw water out of fabrics.
Gas centrifuges are used for isotope separation, such as to enrich nuclear fuel for fissile isotopes.

History

English military engineer Benjamin Robins invented a whirling arm apparatus to determine drag. In 1864, Antonin Prandtl proposed the idea of a dairy centrifuge to separate cream from milk. The idea was subsequently put into practice by his brother, Alexander Prandtl, who made improvements to his brother's design, and exhibited a working butterfat extraction machine in 1875.

Types

A centrifuge machine can be described as a machine with a rapidly rotating container that applies centrifugal force to its contents. There are multiple types of centrifuge, which can be classified by intended use or by rotor design:
Types by rotor design:
Types by intended use:
Industrial centrifuges may otherwise be classified according to the type of separation of the high density fraction from the low density one.
Generally, there are two types of centrifuges: the filtration and sedimentation centrifuges. For the filtration or the so-called screen centrifuge the drum is perforated and is inserted with a filter, for example a filter cloth, wire mesh or lot screen. The suspension flows through the filter and the drum with the perforated wall from the inside to the outside. In this way the solid material is restrained and can be removed. The kind of removing depends on the type of centrifuge, for example manually or periodically. Common types are:
In the centrifuges the drum is a solid wall. This type of centrifuge is used for the purification of a suspension. For the acceleration of the natural deposition process of suspension the centrifuges use centrifugal force. With so-called overflow centrifuges the suspension is drained off and the liquid is added constantly.Common types are:
Though most modern centrifuges are electrically powered, a hand-powered variant inspired by the whirligig has been developed for medical applications in developing countries.
Many designs have been shared for free and open-source centrifuges that can be digitally manufactured. The open-source hardware designs for hand-powered centrifuge for larger volumes of fluids with a radial velocity of over 1750 rpm and over 50 N of relative centrifugal force can be completely 3-D printed for about $25. Other open hardware designs use custom 3-D printed fixtures with inexpensive electric motors to make low-cost centrifuges or CNC cut out OpenFuge.

Uses

Laboratory separations

A wide variety of laboratory-scale centrifuges are used in chemistry, biology, biochemistry and clinical medicine for isolating and separating suspensions and immiscible liquids. They vary widely in speed, capacity, temperature control, and other characteristics. Laboratory centrifuges often can accept a range of different fixed-angle and swinging bucket rotors able to carry different numbers of centrifuge tubes and rated for specific maximum speeds. Controls vary from simple electrical timers to programmable models able to control acceleration and deceleration rates, running speeds, and temperature regimes. Ultracentrifuges spin the rotors under vacuum, eliminating air resistance and enabling exact temperature control. Zonal rotors and continuous flow systems are capable of handing bulk and larger sample volumes, respectively, in a laboratory-scale instrument.
Another application in laboratories is blood separation. Blood separates into cells and proteins and serum.
DNA preparation is another common application for pharmacogenetics and clinical diagnosis. DNA samples are purified and the DNA is prepped for separation by adding buffers and then centrifuging it for a certain amount of time. The blood waste is then removed and another buffer is added and spun inside the centrifuge again. Once the blood waste is removed and another buffer is added the pellet can be suspended and cooled. Proteins can then be removed and the entire thing can be centrifuged again and the DNA can be isolated completely. Specialized cytocentrifuges are used in medical and biological laboratories to concentrate cells for microscopic examination.

Isotope separation

Other centrifuges, the first being the Zippe-type centrifuge, separate isotopes, and these kinds of centrifuges are in use in nuclear power and nuclear weapon programs.

Aeronautics and astronautics

Human centrifuges are exceptionally large centrifuges that test the reactions and tolerance of pilots and astronauts to acceleration above those experienced in the Earth's gravity.
The first centrifuges used for human research were used by Erasmus Darwin, the grandfather of Charles Darwin. The first largescale human centrifuge designed for Aeronautical training was created in Germany in 1933.
The US Air Force at Brooks City Base, Texas operates a human centrifuge while awaiting completion of the new human centrifuge in construction at Wright-Patterson AFB, Ohio. The centrifuge at Brooks City Base is operated by the United States Air Force School of Aerospace Medicine for the purpose of training and evaluating prospective fighter pilots for high-g flight in Air Force fighter aircraft.
The use of large centrifuges to simulate a feeling of gravity has been proposed for future long-duration space missions. Exposure to this simulated gravity would prevent or reduce the bone decalcification and muscle atrophy that affect individuals exposed to long periods of freefall.
Non-Human centrifuge
At the European Space Agency technology center ESTEC an 8-meter diameter centrifuge is used to expose samples in both fields of Life Sciences as well as Physical Sciences. This Large Diameter Centrifuge is operational since 2007. Samples can be exposed to a maximum of 20 times Earth gravity. With its four arms and six freely swing out gondolas it is possible to expose samples with different g-levels at the same time. Gondolas can be fixed at eight different position. Depending on their locations one could e.g. run an experiment at 5 and 10g in the same run. Each gondola can hold an experiment of maximum 80 kg. Experiments performed in this facility ranged from zebra fish, metal alloys, plasma, cells, liquids, Planaria, Drosophila or plants

Industrial centrifugal separator

Industrial centrifugal separator is a coolant filtration system for separating particles from liquid like, grinding machining coolant. It is usually used for non-ferrous particles separation such as, silicon, glass, ceramic, and graphite etc. The filtering process does not require any consumption parts like filter bags, which saves the earth from harm.

Geotechnical centrifuge modeling

is used for physical testing of models involving soils. Centrifuge acceleration is applied to scale models to scale the gravitational acceleration and enable prototype scale stresses to be obtained in scale models. Problems such as building and bridge foundations, earth dams, tunnels, and slope stability, including effects such as blast loading and earthquake shaking.

Synthesis of materials

High gravity conditions generated by centrifuge are applied in the chemical industry, casting, and material synthesis. The convection and mass transfer are greatly affected by the gravitational condition. Researchers reported that the high-gravity level can effectively affect the phase composition and morphology of the products.

Commercial applications

Protocols for centrifugation typically specify the amount of acceleration to be applied to the sample, rather than specifying a rotational speed such as revolutions per minute. This distinction is important because two rotors with different diameters running at the same rotational speed will subject samples to different accelerations. During circular motion the acceleration is the product of the radius and the square of the angular velocity, and the acceleration relative to "g" is traditionally named "relative centrifugal force". The acceleration is measured in multiples of "g", the standard acceleration due to gravity at the Earth's surface, a dimensionless quantity given by the expression:
where
This relationship may be written as
or
where
To avoid having to perform a mathematical calculation every time, one can find nomograms for converting RCF to rpm for a rotor of a given radius. A ruler or other straight edge lined up with the radius on one scale, and the desired RCF on another scale, will point at the correct rpm on the third scale. Based on automatic rotor recognition, modern centrifuges have a button for automatic conversion from RCF to rpm and vice versa.