Cheminformatics has been an active field in various guises since the 1970s and earlier, with activity in academic departments and commercial pharmaceutical research and development departments. The term chemoinformatics was defined in its application to drug discover, for instance, by F.K. Brown in 1998:
Chemoinformatics is the mixing of those information resources to transform data into information and information into knowledge for the intended purpose of making better decisions faster in the area of drug lead identification and optimization.
Since then, both terms, cheminformatics and chemoinformatics, have been used, although, lexicographically, cheminformatics appears to be more frequently used, despite academics in Europe declaring for the variant chemoinformatics in 2006. In 2009, a prominent Springer journal in the field, the Journal of Cheminformatics, was founded by transatlantic executive editors, giving yet further impetus to the shorter variant.
A primary application of cheminformatics is the storage, indexing, and search of information relating to chemical compounds. The efficient search of such stored information includes topics that are dealt with in computer science, such as data mining, information retrieval, information extraction, and machine learning. Related research topics include:
The in silico representation of chemical structures uses specialized formats such as the Simplified molecular input line entry specifications or the XML-based Chemical Markup Language. These representations are often used for storage in large chemical databases. While some formats are suited for visual representations in two- or three-dimensions, others are more suited for studying physical interactions, modeling and docking studies.
Virtual libraries
Chemical data can pertain to real or virtual molecules. Virtual libraries of compounds may be generated in various ways to explore chemical space and hypothesize novel compounds with desired properties. Virtual libraries of classes of compounds were recently generated using the FOG algorithm. This was done by using cheminformatic tools to train transition probabilities of a Markov chain on authentic classes of compounds, and then using the Markov chain to generate novel compounds that were similar to the training database.
Virtual screening
In contrast to high-throughput screening, virtual screening involves computationally screening in silico libraries of compounds, by means of various methods such as docking, to identify members likely to possess desired properties such as biological activity against a given target. In some cases, combinatorial chemistry is used in the development of the library to increase the efficiency in mining the chemical space. More commonly, a diverse library of small molecules or natural products is screened.