Computer-integrated manufacturing is the manufacturing approach of using computers to control entire production process. This integration allows individual processes to exchange information with each part. Although manufacturing can be faster and less error-prone by the integration of computers, the main advantage is the ability to create automated manufacturing processes. Typically CIM relies of closed-loop control processes, based on real-time input from sensors. It is also known as flexible design and manufacturing.
Overview
Computer-integrated manufacturing is used in automotive, aviation, space, and ship building industries. The term "computer-integrated manufacturing" is both a method of manufacturing and the name of a computer-automated system in which individual engineering, production, marketing, and support functions of a manufacturing enterprise are organized. In a CIM system functional areas such as design, analysis, planning, purchasing, cost accounting, inventory control, and distribution are linked through the computer with factory floor functions such as materials handling and management, providing direct control and monitoring of all the operations. As a method of manufacturing, three components distinguish CIM from other manufacturing methodologies:
Means for data storage, retrieval, manipulation and presentation;
Mechanisms for sensing state and modifying processes;
Algorithms for uniting the data processing component with the sensor/modification component.
CIM is an example of the implementation of information and communication technologies in manufacturing. CIM implies that there are at least two computers exchanging information, e.g. the controller of an arm robot and a micro-controller of a. Some factors involved when considering a CIM implementation are the production volume, the experience of the company or personnel to make the integration, the level of the integration into the product itself and the integration of the production processes. CIM is most useful where a high level of ICT is used in the company or facility, such as CAD/CAM systems, the availability of process planning and its data.
History
The idea of "digital manufacturing" became prominent in the early 1970s, with the release of Dr. Joseph Harrington's book, Computer Integrated Manufacturing. However,it was not until 1984 when computer-integrated manufacturing began to be developed and promoted by machine tool manufacturers and the Computer and Automated Systems Association and Society of Manufacturing Engineers.
Topics
Key challenges
There are three major challenges to development of a smoothly operating computer-integrated manufacturing system:
Integration of components from different suppliers: When different machines, such as CNC, conveyors and robots, are using different communications protocols may cause problems.
Data integrity: The higher the degree of automation, the more critical is the integrity of the data used to control the machines. While the CIM system saves on labor of operating the machines, it requires extra human labor in ensuring that there are proper safeguards for the data signals that are used to control the machines.
Process control: Computers may be used to assist the human operators of the manufacturing facility, but there must always be a competent engineer on hand to handle circumstances which could not be foreseen by the designers of the control software.
Subsystems
A computer-integrated manufacturing system is not the same as a "lights-out factory", which would run completely independent of human intervention, although it is a big step in that direction. Part of the system involves flexible manufacturing, where the factory can be quickly modified to produce different products, or where the volume of products can be changed quickly with the aid of computers. Some or all of the following subsystems may be found in a CIM operation: Computer-aided techniques:
, is a 1990s European proposal for an open systems architecture for CIM developed by the AMICE Consortium as a series of ESPRIT projects. The goal of CIMOSA was "to help companies to manage change and integrate their facilities and operations to face world wide competition. It provides a consistent architectural framework for both enterprise modeling and enterprise integration as required in CIM environments". CIMOSA provides a solution for business integration with four types of products:
Inputs to standardization, basics for international standard development.
CIMOSA according to Vernadat, coined the term business process and introduced the process-based approach for integrated enterprise modeling based on a cross-boundaries approach, which opposed to traditional function or activity-based approaches. With CIMOSA also the concept of an "Open System Architecture" for CIM was introduced, which was designed to be vendor-independent, and constructed with standardised CIM modules. Here to the OSA is "described in terms of their function, information, resource, and organizational aspects. This should be designed with structured engineering methods and made operational in a modular and evolutionary architecture for operational use".