When successive powers of a matrix T become small, the matrixT converges to the zero matrix. A regular splitting of a non-singular matrixA results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent.
Definition
We call an n × n matrix T a convergent matrix if for each i = 1, 2,..., n and j = 1, 2,..., n.
Example
Let Computing successive powers of T, we obtain and, in general, Since and T is a convergent matrix. Note that ρ =, where ρ represents the spectral radius of T, since is the only eigenvalue of T.
Characterizations
Let T be an n × n matrix. The following properties are equivalent to T being a convergent matrix:
A general iterative method involves a process that converts the system of linear equations into an equivalent system of the form for some matrix T and vector c. After the initial vector x is selected, the sequence of approximate solution vectors is generated by computing for each k ≥ 0. For any initial vector x ∈, the sequence defined by, for each k ≥ 0 and c ≠ 0, converges to the unique solution of if and only ifρ < 1, that is, T is a convergent matrix.
A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. In the system of linear equations above, with Anon-singular, the matrix A can be split, that is, written as a difference so that can be re-written as above. The expression is a regular splitting of A if and only if B−1 ≥ 0 and C ≥ 0, that is, and C have only nonnegative entries. If the splitting is a regular splitting of the matrix A and A−1 ≥ 0, then ρ < 1 and T is a convergent matrix. Hence the method converges.
Semi-convergent matrix
We call an n × n matrix T a semi-convergent matrix if the limit exists. If A is possibly singular but is consistent, that is, b is in the range of A, then the sequence defined by converges to a solution to for every x ∈ if and only if T is semi-convergent. In this case, the splitting is called a semi-convergent splitting of A.