Convex function


In mathematics, a real-valued function defined on an n-dimensional interval is called convex if the line segment between any two points on the graph of the function lies above or on the graph. Equivalently, a function is convex if its epigraph is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. Well-known examples of convex functions of a single variable include the squaring function and the exponential function.
Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an open set has no more than one minimum. Even in infinite-dimensional spaces, under suitable additional hypotheses, convex functions continue to satisfy such properties and as a result, they are the most well-understood functionals in the calculus of variations. In probability theory, a convex function applied to the expected value of a random variable is always bounded above by the expected value of the convex function of the random variable. This result, known as Jensen's inequality, can be used to deduce inequalities such as the arithmetic-geometric mean inequality and Hölder's inequality.

Definition

Let be a convex set in a real vector space and let be a function.

Functions of one variable

The concept of strong convexity extends and parametrizes the notion of strict convexity. A strongly convex function is also strictly convex, but not vice versa.
A differentiable function is called strongly convex with parameter if the following inequality holds for all points in its domain:
or, more generally,
where is any norm. Some authors, such as refer to functions satisfying this inequality as elliptic functions.
An equivalent condition is the following:
It is not necessary for a function to be differentiable in order to be strongly convex. A third definition for a strongly convex function, with parameter m, is that, for all x, y in the domain and
Notice that this definition approaches the definition for strict convexity as m → 0, and is identical to the definition of a convex function when m = 0. Despite this, functions exist that are strictly convex but are not strongly convex for any m > 0.
If the function is twice continuously differentiable, then it is strongly convex with parameter m if and only if for all x in the domain, where I is the identity and is the Hessian matrix, and the inequality means that is positive semi-definite. This is equivalent to requiring that the minimum eigenvalue of be at least m for all x. If the domain is just the real line, then is just the second derivative so the condition becomes. If m = 0, then this means the Hessian is positive semidefinite, which implies the function is convex, and perhaps strictly convex, but not strongly convex.
Assuming still that the function is twice continuously differentiable, one can show that the lower bound of implies that it is strongly convex. Using Taylor's Theorem there exists
such that
Then
by the assumption about the eigenvalues, and hence we recover the second strong convexity equation above.
A function is strongly convex with parameter m if and only if the function
is convex.
The distinction between convex, strictly convex, and strongly convex can be subtle at first glance. If is twice continuously differentiable and the domain is the real line, then we can characterize it as follows:
For example, let be strictly convex, and suppose there is a sequence of points such that. Even though, the function is not strongly convex because will become arbitrarily small.
A twice continuously differentiable function on a compact domain that satisfies for all is strongly convex. The proof of this statement follows from the extreme value theorem, which states that a continuous function on a compact set has a maximum and minimum.
Strongly convex functions are in general easier to work with than convex or strictly convex functions, since they are a smaller class. Like strictly convex functions, strongly convex functions have unique minima on compact sets.

Uniformly convex functions

A uniformly convex function, with modulus, is a function that, for all x, y in the domain and, satisfies
where is a function that is non-negative and vanishes only at 0. This is a generalization of the concept of strongly convex function; by taking we recover the definition of strong convexity.

Examples

Functions of one variable