A coprolite is fossilizedfeces. Coprolites are classified as trace fossils as opposed to body fossils, as they give evidence for the animal's behaviour rather than morphology. The name is derived from the Greek words κόπρος and λίθος. They were first described by William Buckland in 1829. Prior to this they were known as "fossil fir cones" and "bezoar stones". They serve a valuable purpose in paleontology because they provide direct evidence of the predation and diet of extinct organisms. Coprolites may range in size from a few millimetres to over 60 centimetres. Coprolites, distinct from paleofaeces, are fossilized animal dung. Like other fossils, coprolites have had much of their original composition replaced by mineral deposits such as silicates and calcium carbonates. Paleofaeces, on the other hand, retain much of their original organic composition and can be reconstituted to determine their original chemical properties, though in practice the term coprolite is also used for ancient human faecal material in archaeological contexts.
Initial discovery
The fossil hunter Mary Anning noticed as early as 1824 that "bezoar stones" were often found in the abdominal region of ichthyosaur skeletons found in the Lias formation at Lyme Regis. She also noted that if such stones were broken open they often contained fossilized fish bones and scales as well as sometimes bones from smaller ichthyosaurs. It was these observations by Anning that led the geologist William Buckland to propose in 1829 that the stones were fossilized feces and name them coprolites. Buckland also suspected that the spiral markings on the fossils indicated that ichthyosaurs had spiral ridges in their intestines similar to those of modern sharks, and that some of these coprolites were black with ink from swallowed belemnites.
Research value
By examining coprolites, paleontologists are able to find information about the diet of the animal, such as whether it was a herbivorous or carnivorous, and the taphonomy of the coprolites, although the producer is rarely identified unambiguously, especially with more ancient examples. In some instances, knowledge about the anatomy of animal digestive tracts can be helpful in assigning a coprolite to the animal that produced it, one example being the finding that the TriassicdinosauriformSilesaurus may have been an insectivore, a suggestion which was based on the beak-like jaws of the animal and the high density of beetle remains found in associated coprolites. Further, coprolites can be analyzed for certain minerals that are known to exist in trace amounts in certain species of plant that can still be detected millions of years later.
Recognizing coprolites
The recognition of coprolites is aided by their structural patterns, such as spiral or annular markings, by their content, such as undigested food fragments, and by associated fossil remains. The smallest coprolites are often difficult to distinguish from inorganic pellets or from eggs. Most coprolites are composed chiefly of calcium phosphate, along with minor quantities of organic matter. By analyzing coprolites, it is possible to infer the diet of the animal which produced them. Coprolites have been recorded in deposits ranging in age from the Cambrian period to recent times and are found worldwide. Some of them are useful as index fossils, such as Favreina from the Jurassic period of Haute-Savoie in France. Some marine deposits contain a high proportion of fecal remains. However, animal excrement is easily fragmented and destroyed, so usually has little chance of becoming fossilized.