The 6-vertex crown graph forms a cycle, and the 8-vertex crown graph is isomorphic to the graph of a cube. In the Schläfli double six, a configuration of 12 lines and 30 points in three-dimensional space, the twelve lines intersect each other in the pattern of a 12-vertex crown graph.
Properties
The number of edges in a crown graph is the pronic numbern. Its achromatic number is n: one can find a complete coloring by choosing each pair as one of the color classes. Crown graphs are symmetric and distance-transitive. describe partitions of the edges of a crown graph into equal-length cycles. The 2n-vertex crown graph may be embedded into four-dimensional Euclidean space in such a way that all of its edges have unit length. However, this embedding may also place some non-adjacent vertices a unit distance apart. An embedding in which edges are at unit distance and non-edges are not at unit distance requires at least n − 2 dimensions. This example shows that a graph may require very different dimensions to be represented as a unit distance graphs and as a strict unit distance graph. The minimum number of complete bipartite subgraphs needed to cover the edges of a crown graph is the inverse function of the central binomial coefficient. The complement graph of a 2n-vertex crown graph is the Cartesian product of complete graphsK2Kn, or equivalently the 2 × n rook's graph.
Applications
In etiquette, a traditional rule for arranging guests at a dinner table is that men and women should alternate positions, and that no married couple should sit next to each other. The arrangements satisfying this rule, for a party consisting ofn married couples, can be described as the Hamiltonian cycles of a crown graph. For instance, the arrangements of vertices shown in the figure can be interpreted as seating charts of this type in which each husband and wife are seated as far apart as possible. The problem of counting the number of possible seating arrangements, or almost equivalently the number of Hamiltonian cycles in a crown graph, is known in combinatorics as the ménage problem; for crown graphs with 6, 8, 10,... vertices the number of Hamiltonian cycles is Crown graphs can be used to show that greedy coloring algorithms behave badly in the worst case: if the vertices of a crown graph are presented to the algorithm in the order u0, v0, u1, v1, etc., then a greedy coloring uses n colors, whereas the optimal number of colors is two. This construction is attributed to ; crown graphs are sometimes called Johnson’s graphs with notation Jn. uses crown graphs as part of a construction showing hardness of approximation of coloring problems. uses distances in crown graphs as an example of a metric space that is difficult to embed into a normed vector space. As show, crown graphs are one of a small number of different types of graphs that can occur as distance-regular circulant graphs. describe polygons that have crown graphs as their visibility graphs; they use this example to show that representing visibility graphs as unions of complete bipartite graphs may not always be space-efficient. A crown graph with 2n vertices, with its edges oriented from one side of the bipartition to the other, forms the standard example of a partially ordered set with order dimensionn.