Crystallographic point group


In crystallography, a crystallographic point group is a set of symmetry operations, corresponding to one of the point groups in three dimensions, such that each operation would leave the structure of a crystal unchanged i.e. the same kinds of atoms would be placed in similar positions as before the transformation. For example, in a primitive cubic crystal system, a rotation of the unit cell by 90 degree around an axis that is perpendicular to two parallel faces of the cube, intersecting at its center, is a symmetry operation that projects each atom to the location of one of its neighbor leaving the overall structure of the crystal unaffected.
In the classification of crystals, each point group defines a so-called crystal class. There are infinitely many three-dimensional point groups. However, the crystallographic restriction on the general point groups results in there being only 32 crystallographic point groups. These 32 point groups are one-and-the-same as the 32 types of morphological crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms.
The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency, or electro-optical features such as the Pockels effect. For a periodic crystal, the group must maintain the three-dimensional translational symmetry that defines crystallinity.

Notation

The point groups are named according to their component symmetries. There are several standard notations used by crystallographers, mineralogists, and physicists.
For the correspondence of the two systems below, see crystal system.

Schoenflies notation

In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following:
Due to the crystallographic restriction theorem, n = 1, 2, 3, 4, or 6 in 2- or 3-dimensional space.
n12346
CnC1C2C3C4C6
CnvC1v=C1hC2vC3vC4vC6v
CnhC1hC2hC3hC4hC6h
DnD1=C2D2D3D4D6
DnhD1h=C2vD2hD3hD4hD6h
DndD1d=C2hD2dD3dD4dD6d
S2nS2S4S6S8S12

D4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O and Oh constitute 32 crystallographic point groups.

Hermann–Mauguin notation

An abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are

The correspondence between different notations

Deriving the crystallographic point group (crystal class) from the space group

  1. Leave out the Bravais type
  2. Convert all symmetry elements with translational components into their respective symmetry elements without translation symmetry
  3. Axes of rotation, rotoinversion axes and mirror planes remain unchanged.