A dental laser is a type of laser designed specifically for use in oral surgery or dentistry. In the United States, the use of lasers on the gums was first approved by the Food and Drug Administration in the early 1990s, and use on hard tissue like teeth or the bone of the mandible gained approval in 1996. Several variants of dental lasers are in use with different wavelengths and these mean they are better suited for different applications.
* Diode lasers wavelengths in the 810–1,100 nm range are poorly absorbed by the soft tissues such as the gingivae, and cannot be used for soft tissue cutting or ablation. Instead, the distal end of diode’s glass fiber is charred and the char is heated by the 810-1,100 nm laser beam, which in turn heats up the glass fiber’ tip. The soft tissue is cut, on contact, by the hot charred glass tip and not by the laser beam this was primarily used by the Michigan school of dentistry. Similarly lasers are used for soft tissue surgeries in the oral cavity, such as gingivectomy, periodontalsulcular debridement, LANAP, frenectomy, biopsy, and coagulation of graft donor sites. The Nd:YAG laserwavelength are partially absorbed by pigment in the tissue such as hemoglobin and melanin. These lasers are often used for debridement and disinfection of periodontal pockets. Their coagulative ability to form fibrin allows them to seal treated pockets. The CO2 laser remains the bestsurgical laser for the soft tissue where both cutting and hemostasis is achieved photo-thermally.
* Erbium lasers are both hard and soft tissue capable. They can be used for a host of dental procedures, and allow for more procedures to be done without local anesthesia. Erbium lasers can be used for hard tissue procedures like bone cutting and create minimal thermal and mechanical trauma to adjacent tissues. These hard tissue procedures show an excellent healing response. Soft tissue applications with erbium lasers feature less hemostasis and coagulation abilities relative to the CO2 lasers. Er,Cr:YSGG laser was found to be effective in gum de-pigmentation. The new CO2 laser operating at 9,300 nm features strong absorption in both soft and hard tissue and is the newest alternative to erbium lasers. The 9,300 nm laser ablates hard tissue in excess of 5,000 °C, which often results in extremely bright thermal radiation.
In September 2016 the Cochrane collaboration published a systematic review of the current evidence comparing the use of lasers for caries removal, in both deciduous and adult teeth, with the standard dental drill. Nine trials were reviewed, published between 1998 and 2014, with 662 participants in total. These included three different types of laser: ; ; and. Overall the quality of evidence available was found to be low, and the authors were unable to recommend one method of caries removal over the other. There was no evidence of a difference between the marginal integrity or durability of the restorations placed. However, there was some evidence that the laser produced less pain and required less anaesthesia than the drill. The authors concluded that more research is required.
Cost of lasers
Use of the dental laser remains limited, with cost and effectiveness being the primary barriers. The cost of a dental laser ranges from $4,000 to $130,000, where a pneumatic dental drill costs between $200 and $500. Hard tissue lasers are incapable of performing some routine operations in the treatment of cavities.
Benefits of lasers
Dental lasers are not without their benefits, though, as the use of a laser can decrease morbidity after surgery, and reduces the need for anesthetics. Because of the cauterization of tissue there will be little bleeding following soft tissue procedures, and some of the risks of alternative electrosurgery procedures are avoided.
History
made the first CO2 laser in 1964, in the same year the was invented at Bell Labs.