Directed-energy weapon


A directed-energy weapon is a ranged weapon that damages its target with highly focused energy, including laser, microwaves and particle beams. Potential applications of this technology include weapons that target personnel, missiles, vehicles, and optical devices.
In the United States, the Pentagon, DARPA, the Air Force Research Laboratory, United States Army Armament Research Development and Engineering Center, and the Naval Research Laboratory are researching directed-energy weapons and railguns to counter ballistic missiles, hypersonic cruise missiles, and hypersonic glide vehicles. These systems of missile defense are expected to come online no sooner than the mid to late-2020s.
Russia, China, India, and the United Kingdom are also developing directed-energy weapons while Iran and Turkey have directed-energy weapons in active service and the first usage of directed-energy weapons in a combat was claimed to have been happened in Libya in August 2019 by Turkey which claimed to use the ALKA Directed-energy weapon.
After decades of research and development, directed-energy weapons are still at the experimental stage and it remains to be seen if or when they will be deployed as practical, high-performance military weapons.

Operational advantages

Directed energy weapons could have several main advantages over conventional weaponry:
Although some devices are labeled as microwave weapons, the microwave range is commonly defined as being between 300 MHz and 300 GHz, which is within the RF range—these frequencies having wavelengths of 1 millimeter to 1 meter. Some examples of weapons which have been publicized by the military are as follows:
A laser weapon is a directed-energy weapon based on lasers.

Particle-beam weapons

Particle-beam weapons can use charged or neutral particles, and can be either endoatmospheric or exoatmospheric. Particle beams as beam weapons are theoretically possible, but practical weapons have not been demonstrated yet. Certain types of particle beams have the advantage of being self-focusing in the atmosphere.
Blooming is also a problem in particle-beam weapons. Energy that would otherwise be focused on the target spreads out and the beam becomes less effective:
Plasma weapons fire a beam, bolt, or stream of plasma, which is an excited state of matter consisting of atomic electrons & nuclei and free electrons if ionized, or other particles if pinched.
The MARAUDER used the Shiva Star project to accelerate a toroid of plasma at a significant percentage of the speed of light.
The Russian Federation is developing plasma weapons.

Sonic weapons

Tests performed on mice show the threshold for both lung and liver damage occurs at about 184 dB. Damage increases rapidly as intensity is increased. Noise-induced neurological disturbances in humans exposed to continuous low frequency tones for durations longer than 15 minutes involved development of immediate and long-term problems affecting brain tissue. The symptoms resembled those of individuals who had suffered minor head injuries. One theory for a causal mechanism is that the prolonged sound exposure resulted in enough mechanical strain to brain tissue to induce an encephalopathy.

Long Range Acoustic Device (LRAD)

The Long Range Acoustic Device is an acoustic hailing device developed by LRAD Corporation to send messages and warning tones over longer distances or at higher volume than normal loudspeakers. LRAD systems are used for long-range communications in a variety of applications including as a means of non-lethal, non-kinetic crowd control.
According to the manufacturer's specifications, the systems weigh from and can emit sound in a 30°- 60° beam at 2.5 kHz.

History

Mirrors of Archimedes

According to a legend, Archimedes created a mirror with an adjustable focal length to focus sunlight on ships of the Roman fleet as they invaded Syracuse, setting them on fire. Historians point out that the earliest accounts of the battle did not mention a "burning mirror", but merely stated that Archimedes's ingenuity combined with a way to hurl fire were relevant to the victory. Some attempts to replicate this feat have had some success; in particular, an experiment by students at MIT showed that a mirror-based weapon was at least possible, if not necessarily practical.

Robert Watson-Watt

In 1935, the British Air Ministry asked Robert Watson-Watt of the Radio Research Station whether a "death ray" was possible. He and colleague Arnold Wilkins quickly concluded that it was not feasible, but as a consequence suggested using radio for the detection of aircraft and this started the development of radar in Britain.

The fictional "engine-stopping ray"

Stories in the 1930s and World War Two gave rise to the idea of an "engine-stopping ray". They seemed to have arisen from the testing of the television transmitter in Feldberg, Germany. Because electrical noise from car engines would interfere with field strength measurements, sentries would stop all traffic in the vicinity for the twenty minutes or so needed for a test. Reversing the order of events in retelling the story created a "tale" where tourists car engine stopped first and then were approached by a German soldier who told them that they had to wait. The soldier returned a short time later to say that the engine would now work and the tourists drove off. Such stories were circulating in Britain around 1938 and during the war British Intelligence relaunched the myth as a "British engine-stopping ray", trying to spoof the Germans into researching what the British had supposedly invented in an attempt to tie up German scientific resources.

German World War II experimental weapons

During the early 1940s Axis engineers developed a sonic cannon that could cause fatal vibrations in its target body. A methane gas combustion chamber leading to two parabolic dishes pulse-detonated at roughly 44 Hz. This sound, magnified by the dish reflectors, caused vertigo and nausea at by vibrating the middle ear bones and shaking the cochlear fluid within the inner ear. At distances of, the sound waves could act on organ tissues and fluids by repeatedly compressing and releasing compressive resistant organs such as the kidneys, spleen, and liver. Lung tissue was affected at only the closest ranges as atmospheric air is highly compressible and only the blood rich alveoli resist compression. In practice, the weapon was highly vulnerable to enemy fire. Rifle, bazooka and mortar rounds easily deformed the parabolic reflectors, rendering the wave amplification ineffective.
In the later phases of World War II, Nazi Germany increasingly put its hopes on research into technologically revolutionary secret weapons, the Wunderwaffe.
Among the directed-energy weapons the Nazis investigated were X-ray beam weapons developed under Heinz Schmellenmeier, Richard Gans and Fritz Houtermans. They built an electron accelerator called Rheotron to generate hard X-ray synchrotron beams for the Reichsluftfahrtministerium. The intent was to pre-ionize ignition in aircraft engines and hence serve as anti-aircraft DEW and bring planes down into the reach of the flak. The Rheotron was captured by the Americans in Burggrub on April 14, 1945.
Another approach was Ernst Schiebolds 'Röntgenkanone' developed from 1943 in Großostheim near Aschaffenburg. The Company Richert Seifert & Co from Hamburg delivered parts.

Reported use in Sino-Soviet conflicts

The Central Intelligence Agency informed Secretary Henry Kissinger that it had twelve reports of Soviet forces using laser-based weapons against Chinese forces during the 1969 Sino-Soviet border clashes, though William Colby doubted that they had actually been employed.

Strategic Defense Initiative

In the 1980s, U.S. President Ronald Reagan proposed the Strategic Defense Initiative program, which was nicknamed Star Wars. It suggested that lasers, perhaps space-based X-ray lasers, could destroy ICBMs in flight. Panel discussions on the role of high-power lasers in SDI took place at various laser conferences, during the 1980s, with the participation of noted physicists including Edward Teller.
Though the strategic missile defense concept has continued to the present under the Missile Defense Agency, most of the directed-energy weapon concepts were shelved. However, Boeing has been somewhat successful with the Boeing YAL-1 and Boeing NC-135, the first of which destroyed two missiles in February 2010. Funding has been cut to both of the programs.

Iraq War

During the Iraq War, electromagnetic weapons, including high power microwaves, were used by the U.S. military to disrupt and destroy Iraqi electronic systems and may have been used for crowd control. Types and magnitudes of exposure to electromagnetic fields are unknown.

Alleged tracking of Space Shuttle ''Challenger''

The Soviet Union invested some effort in the development of ruby and carbon dioxide lasers as anti-ballistic missile systems, and later as a tracking and anti-satellite system. There are reports that the Terra-3 complex at Sary Shagan was used on several occasions to temporarily "blind" US spy satellites in the IR range.
It has been claimed that the USSR made use of the lasers at the Terra-3 site to target the Space Shuttle Challenger in 1984. At the time, the Soviet Union were concerned that the shuttle was being used as a reconnaissance platform. On 10 October 1984, the Terra-3 tracking laser was allegedly aimed at Challenger as it passed over the facility. Early reports claimed that this was responsible for causing "malfunctions on the space shuttle and distress to the crew", and that the United States filed a diplomatic protest about the incident. However, this story is comprehensively denied by the crew members of STS-41-G and knowledgeable members of the US intelligence community. After the end of the Cold War, the Terra-3 facility was found to be a low-power laser testing site with limited satellite tracking capabilities, which is now abandoned and partially disassembled.

Planetary defense

In the United States, the Directed Energy Solar Targeting of Asteroids and exploRation Project was considered for non-military use to protect Earth from asteroids.

Non-lethal weapons

The TECOM Technology Symposium in 1997 concluded on non-lethal weapons, "determining the target effects on personnel is the greatest challenge to the testing community", primarily because "the potential of injury and death severely limits human tests".
Also, "directed-energy weapons that target the central nervous system and cause neurophysiological disorders may violate the Certain Conventional Weapons Convention of 1980. Weapons that go beyond non-lethal intentions and cause 'superfluous injury or unnecessary suffering' may also violate the Protocol I to the Geneva Conventions of 1977."
Some common bio-effects of non-lethal electromagnetic weapons include:
Interference with breathing poses the most significant, potentially lethal results.
Light and repetitive visual signals can induce epileptic seizures. Vection and motion sickness can also occur.
Cruise ships are known to use sonic weapons to drive off pirates.
Russia has been reportedly using blinding laser weapons during its military intervention in Donbass.

Similar Articles