Domain of holomorphy


In mathematics, in the theory of functions of several complex variables, a domain of holomorphy is a set which is maximal in the sense that there exists a holomorphic function on this set which cannot be extended to a bigger set.
Formally, an open set in the n-dimensional complex space is called a domain of holomorphy if there do not exist non-empty open sets and where is connected, and such that for every holomorphic function on there exists a holomorphic function on with on
In the case, every open set is a domain of holomorphy: we can define a holomorphic function with zeros accumulating everywhere on the boundary of the domain, which must then be a natural boundary for a domain of definition of its reciprocal. For this is no longer true, as it follows from Hartogs' lemma.

Equivalent conditions

For a domain the following conditions are equivalent:
  1. is a domain of holomorphy
  2. is holomorphically convex
  3. is pseudoconvex
  4. is Levi convex - for every sequence of analytic compact surfaces such that for some set we have
  5. has local Levi property - for every point there exist a neighbourhood of and holomorphic on such that cannot be extended to any neighbourhood of
Implications are standard results. The main difficulty lies in proving, i.e. constructing a global holomorphic function which admits no extension from non-extendable functions defined only locally. This is called the Levi problem and was first solved by Kiyoshi Oka, and then by Lars Hörmander using methods from functional analysis and partial differential equations.

Properties