Double-precision floating-point format


Double-precision floating-point format is a computer number format, usually occupying 64 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.
Floating point is used to represent fractional values, or when a wider range is needed than is provided by fixed point, even if at the cost of precision. Double precision may be chosen when the range or precision of single precision would be insufficient.
In the IEEE 754-2008 standard, the 64-bit base-2 format is officially referred to as binary64; it was called double in IEEE 754-1985. IEEE 754 specifies additional floating-point formats, including 32-bit base-2 single precision and, more recently, base-10 representations.
One of the first programming languages to provide single- and double-precision floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g., GW-BASIC's double-precision data type was the 64-bit MBF floating-point format.

IEEE 754 double-precision binary floating-point format: binary64

Double-precision binary floating-point is a commonly used format on PCs, due to its wider range over single-precision floating point, in spite of its performance and bandwidth cost. As with single-precision floating-point format, it lacks precision on integer numbers when compared with an integer format of the same size. It is commonly known simply as double. The IEEE 754 standard specifies a binary64 as having:
The sign bit determines the sign of the number.
The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range from −1022 to +1023 because exponents of −1023 and +1024 are reserved for special numbers.
The 53-bit significand precision gives from 15 to 17 significant decimal digits precision. If a decimal string with at most 15 significant digits is converted to IEEE 754 double-precision representation, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 double-precision number is converted to a decimal string with at least 17 significant digits, and then converted back to double-precision representation, the final result must match the original number.
The format is written with the significand having an implicit integer bit of value 1. With the 52 bits of the fraction significand appearing in the memory format, the total precision is therefore 53 bits. The bits are laid out as follows:
The real value assumed by a given 64-bit double-precision datum with a given biased exponent
and a 52-bit fraction is
or
Between 252=4,503,599,627,370,496 and 253=9,007,199,254,740,992 the representable numbers are exactly the integers. For the next range, from 253 to 254, everything is multiplied by 2, so the representable numbers are the even ones, etc. Conversely, for the previous range from 251 to 252, the spacing is 0.5, etc.
The spacing as a fraction of the numbers in the range from 2n to 2n+1 is 2n−52.
The maximum relative rounding error when rounding a number to the nearest representable one is therefore 2−53.
The 11 bit width of the exponent allows the representation of numbers between 10−308 and 10308, with full 15–17 decimal digits precision. By compromising precision, the subnormal representation allows even smaller values up to about 5 × 10−324.

Exponent encoding

The double-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 1023; also known as exponent bias in the IEEE 754 standard. Examples of such representations would be:
The exponents 00016 and 7ff16 have a special meaning:
where F is the fractional part of the significand. All bit patterns are valid encoding.
Except for the above exceptions, the entire double-precision number is described by:
In the case of subnormals the double-precision number is described by:

Endianness

Double-precision examples

are not completely specified in IEEE 754 and depend on the processor. Most processors, such as the x86 family and the ARM family processors, use the most significant bit of the significand field to indicate a quiet NaN; this is what is recommended by IEEE 754. The PA-RISC processors use the bit to indicate a signaling NaN.
By default, 1/3 rounds down, instead of up like single precision, because of the odd number of bits in the significand.
In more detail:
Given the hexadecimal representation 3FD5 5555 5555 555516,
Sign = 0
Exponent = 3FD16 = 1021
Exponent Bias = 1023
Fraction = 5 5555 5555 555516
Value = 2 × 1.Fraction – Note that Fraction must not be converted to decimal here
= 2−2 ×
= 2−54 × 15 5555 5555 555516
= 0.333333333333333314829616256247390992939472198486328125
≈ 1/3

Execution speed with double-precision arithmetic

Using double-precision floating-point variables and mathematical functions are slower than working with their single precision counterparts. One area of computing where this is a particular issue is for parallel code running on GPUs. For example, when using NVIDIA's CUDA platform, calculations with double precision take, depending on a hardware, approximately 2 to 32 times as long to complete compared to those done using single precision.

Implementations

Doubles are implemented in many programming languages in different ways such as the following. On processors with only dynamic precision, such as x86 without SSE2 and with extended precision used by default, software may have difficulties to fulfill some requirements.

C and C++

C and C++ offer a wide variety of arithmetic types. Double precision is not required by the standards, but on most systems, the double type corresponds to double precision. However, on 32-bit x86 with extended precision by default, some compilers may not conform to the C standard and/or the arithmetic may suffer from double rounding.

Fortran

provides several integer and real types, and the 64-bit type real64, accessible via Fortran's intrinsic module iso_fortran_env, corresponds to double precision.

Common Lisp

provides the types SHORT-FLOAT, SINGLE-FLOAT, DOUBLE-FLOAT and LONG-FLOAT. Most implementations provide SINGLE-FLOATs and DOUBLE-FLOATs with the other types appropriate synonyms. Common Lisp provides exceptions for catching floating-point underflows and overflows, and the inexact floating-point exception, as per IEEE 754. No infinities and NaNs are described in the ANSI standard, however, several implementations do provide these as extensions.

Java

On Java before version 1.2, every implementation had to be IEEE 754 compliant. Version 1.2 allowed implementations to bring extra precision in intermediate computations for platforms like x87. Thus a modifier strictfp was introduced to enforce strict IEEE 754 computations.

JavaScript

As specified by the ECMAScript standard, all arithmetic in JavaScript shall be done using double-precision floating-point arithmetic.