Drowning


Drowning is defined as respiratory impairment as a result of being in or under a liquid. Drowning typically occurs silently, with only a few people able to wave their hands or call for help. Symptoms following rescue may include breathing problems, vomiting, confusion, or unconsciousness. Occasionally symptoms may not appear until up to six hours afterwards. Drowning may be complicated by low body temperature, aspiration of vomit, or acute respiratory distress syndrome.
Drowning is more common when the weather is warm and among those with frequent access to water. Risk factors include alcohol use, epilepsy, and low socioeconomic status. Common locations of drowning include swimming pools, bathtubs, natural bodies of water, and buckets. Initially the person holds their breath, which is followed by laryngospasm, and then low oxygen levels. Significant amounts of water usually only enter the lungs later in the process. It may be classified into three types: drowning with death, drowning with ongoing health problems, and drowning with no ongoing health problems.
Efforts to prevent drowning include teaching children to swim, safe boating practices, and limiting or removing access to water such as by fencing pools. Treatment of those whose who are not breathing should begin with opening the airway and providing five breaths. In those whose heart is not beating and who have been underwater for less than an hour CPR is recommended. Survival rates are better among those with a shorter time under the water. Among children who survive, poor outcomes occur in about 7.5% of cases.
In 2015, there were an estimated 4.5 million cases of unintentional drowning worldwide. That year, there were 324,000 drowning deaths, making it the third leading cause from unintentional injuries after falls and motor vehicle collisions. Of these deaths, 56,000 occurred in children less than five years old. Drowning accounts for 7% of all injury related deaths, with more than 90% of these deaths occurring in developing countries. Drowning occurs more frequently in males and the young.

Signs and symptoms

Drowning is most often quick and unspectacular. Its media depictions as a loud, violent struggle have much more in common with distressed non-swimmers, who may well drown but have not yet begun to do so. In particular, an asphyxiating person is seldom able to call for help. The instinctive drowning response covers many signs or behaviors associated with drowning or near-drowning:
Drowning begins at the point a person is unable to keep their mouth above water; inhalation of water takes place at a later stage. Most people demonstrating the instinctive drowning response do not show obvious prior evidence of distress.
A person drowning is generally unable to call for help, or seek attention, as they cannot obtain enough air. The instinctive drowning response is the final set of autonomic reactions in the 20–60 seconds before sinking underwater, and to the untrained eye can look similar to calm safe behavior. Lifeguards and other persons trained in rescue learn to recognize drowning people by watching for these movements.

Cause

Drowning mainly happens due to the inability to swim in a circumstance: lack of skill, state of the waters, physical condition, loss of consciousness, and others. Anxiety can lead to exhaustion, precipitating the drowning.
Approximately 90% of drownings take place in freshwater and 10% in seawater. Drownings in other fluids are rare, and often relate to industrial accidents. In New Zealand's early colonial history, so many settlers died while trying to cross rivers that drowning was known as "The New Zealand death".
People have drowned in as little as 30 mm of water lying face down. Children have drowned in baths, buckets and toilets; inebriates or those under the influence of drugs have died in puddles.
Drowning can also happen after the drowning incident itself, due to further complications. The inhaled fluid can act as an irritant inside the lungs. Physiological responses to even small quantities include the extrusion of liquid into the lungs over the following hours, but this reduces the ability to exchange air and can lead to a person "drowning in their own body fluid". Certain poisonous vapors or gases, or vomit can have a similar effect. The reaction can take place up to 72 hours after the drowning incident, and may lead to a serious condition or death.

Risk factors

Many factors, behavioral and physical, are related to drowning:
Population groups at risk in the US are:
Some special causes of drowning can also happen during freediving activities:
Drowning can be considered as going through four stages:
  1. Breath-hold under voluntary control until the urge to breathe due to hypercapnia becomes overwhelming
  2. Fluid is aspirated into the airways and/or swallowed
  3. Cerebral anoxia stops breathing and aspiration
  4. Cerebral injury due to anoxia becomes irreversible
Generally, in the early stages of drowning a person holds their breath to prevent water from entering their lungs. When this is no longer possible a small amount of water entering the trachea causes a muscular spasm that seals the airway and prevents further passage of water. If the process is not interrupted, loss of consciousness due to hypoxia is followed rapidly by cardiac arrest.

Oxygen deprivation

A conscious person will hold his or her breath and will try to access air, often resulting in panic, including rapid body movement. This uses up more oxygen in the blood stream and reduces the time to unconsciousness. The person can voluntarily hold his or her breath for some time, but the breathing reflex will increase until the person tries to breathe, even when submerged.
The breathing reflex in the human body is weakly related to the amount of oxygen in the blood but strongly related to the amount of carbon dioxide. During apnea, the oxygen in the body is used by the cells, and excreted as carbon dioxide. Thus, the level of oxygen in the blood decreases, and the level of carbon dioxide increases. Increasing carbon dioxide levels lead to a stronger and stronger breathing reflex, up to the breath-hold breakpoint, at which the person can no longer voluntarily hold his or her breath. This typically occurs at an arterial partial pressure of carbon dioxide of 55 mm Hg, but may differ significantly between people.
The breath-hold break point can be suppressed or delayed either intentionally or unintentionally. Hyperventilation before any dive, deep or shallow, flushes out carbon dioxide in the blood resulting in a dive commencing with an abnormally low carbon dioxide level; a potentially dangerous condition known as hypocapnia. The level of carbon dioxide in the blood after hyperventilation may then be insufficient to trigger the breathing reflex later in the dive and a blackout may occur without warning and before the diver feels any urgent need to breathe. This can occur at any depth and is common in distance breath-hold divers in swimming pools. Hyperventilation is often used by both deep and distance free-divers to flush out carbon dioxide from the lungs to suppress the breathing reflex for longer. It is important not to mistake this for an attempt to increase the body's oxygen store. The body at rest is fully oxygenated by normal breathing and cannot take on any more. Breath holding in water should always be supervised by a second person, as by hyperventilating, one increases the risk of shallow water blackout because insufficient carbon dioxide levels in the blood fail to trigger the breathing reflex.
A continued lack of oxygen in the brain, hypoxia, will quickly render a person unconscious usually around a blood partial pressure of oxygen of 25–30 mmHg. An unconscious person rescued with an airway still sealed from laryngospasm stands a good chance of a full recovery. Artificial respiration is also much more effective without water in the lungs. At this point the person stands a good chance of recovery if attended to within minutes. More than 10% of drownings may involve laryngospasm, but the evidence suggests that it is not usually effective at preventing water from entering the trachea. The lack of water found in lungs during autopsy does not necessarily mean there was no water at the time of drowning, as small amounts of freshwater are readily absorbed into the bloodstream. Hypercarbia and hypoxia both contribute to laryngeal relaxation, after which the airway is effectively open through the trachea. There is also bronchospasm and mucous production in the bronchi associated with laryngospasm, and these may prevent water entry at terminal relaxation.
The hypoxemia and acidosis caused by asphyxia in drowning affect various organs. There can be central nervous system damage, cardiac arhythmias, pulmonary injury, reperfusion injury, and multiple-organ secondary injury with prolonged tissue hypoxia.
A lack of oxygen or chemical changes in the lungs may cause the heart to stop beating. This cardiac arrest stops the flow of blood and thus stops the transport of oxygen to the brain. Cardiac arrest used to be the traditional point of death but at this point there is still a chance of recovery. The brain cannot survive long without oxygen and the continued lack of oxygen in the blood combined with the cardiac arrest will lead to the deterioration of brain cells causing first brain damage and eventually brain death from which recovery is generally considered impossible. The brain will die after approximately six minutes without oxygen at normal body temperature, but hypothermia of the central nervous system may prolong this.
The extent of central nervous system injury to a large extent determines the survival and long term consequences of drowning, In the case of children, most survivors are found within 2 minutes of immersion, and most fatalities are found after 10 minutes or more.

Water aspiration

If water enters the airways of a conscious person, the person will try to cough up the water or swallow it, often inhaling more water involuntarily. When water enters the larynx or trachea, both conscious and unconscious persons experience laryngospasm, in which the vocal cords constrict, sealing the airway. This prevents water from entering the lungs. Because of this laryngospasm, in the initial phase of drowning, water generally enters the stomach and very little water enters the lungs. Though laryngospasm prevents water from entering the lungs, it also interferes with breathing. In most persons, the laryngospasm relaxes some time after unconsciousness and water can then enter the lungs causing a "wet drowning". However, about 7–10% of people maintain this seal until cardiac arrest. This has been called "dry drowning", as no water enters the lungs. In forensic pathology, water in the lungs indicates that the person was still alive at the point of submersion. Absence of water in the lungs may be either a dry drowning or indicates a death before submersion.
Aspirated water that reaches the alveoli destroys the pulmonary surfactant, which causes pulmonary oedema and decreased lung compliance which compromises oxygenation in affected parts of the lungs. This is associated with metabolic acidosis, and secondary fluid and electrolyte shifts. During alveolar fluid exchange, diatoms present in the water may pass through the alveolar wall into the capillaries to be carried to internal organs. Presence of these diatoms may be diagnostic of drowning.
Of people who have survived drowning, almost one third will experience complications such as acute lung injury or acute respiratory distress syndrome. ALI/ARDS can be triggered by pneumonia, sepsis and water aspiration and are life-threatening disorders that can result in death if not treated promptly. During drowning, aspirated water enters the lung tissues, causes a reduction in alveolar surfactant, obstructs ventilation and triggers a release of inflammatory mediators which ultimately results in hypoxia. Specifically, upon reaching the alveoli, hypotonic liquid found in fresh water dilutes pulmonary surfactant, destroying the substance. Comparatively, aspiration of hypertonic seawater draws liquid from the plasma into the alveoli and similarly causes damage to surfactant by disrupting the alveolar-capillary membrane. Still, there is no clinical difference between salt and freshwater drowning. Once someone has reached definitive care, supportive care strategies such as mechanical ventilation can help to reduce the complications of ALI/ARDS.
Whether a person drowns in fresh water versus salt water makes no difference in the respiratory management or the outcome of the person. People who drown in fresh water may experience worse hypoxemia early in their treatment, however, this initial difference is short-lived and the management of both fresh water and salt water drowning is essentially the same.

Cold water immersion

Submerging the face in water cooler than about triggers the diving reflex, common to air-breathing vertebrates, especially marine mammals such as whales and seals. This reflex protects the body by putting it into energy saving mode to maximize the time it can stay under water. The strength of this reflex is greater in colder water and has three principal effects:
The reflex action is automatic and allows both a conscious and an unconscious person to survive longer without oxygen under water than in a comparable situation on dry land. The exact mechanism for this effect has been debated and may be a result of brain cooling similar to the protective effects seen in people who are treated with deep hypothermia.
The actual cause of death in cold or very cold water is usually lethal bodily reactions to increased heat loss and to freezing water, rather than any loss of core body temperature. Of those who die after plunging into freezing seas, around 20% die within 2 minutes from cold shock, another 50% die within 15 – 30 minutes from cold incapacitation, and exhaustion and unconsciousness cause drowning, claiming the rest within a similar time. A notable example of this occurred during the sinking of the Titanic, in which most people who entered the water died within 15–30 minutes.
Submersion into cold water can induce cardiac arrhythmias in healthy people, sometimes causing strong swimmers to drown. The physiological effects caused by the diving reflex conflict with the body's cold shock response, which includes a gasp and uncontrollable hyperventilation leading to aspiration of water. While breath-holding triggers a slower heart rate, cold shock activates tachycardia, an increase in heart rate. It is thought that this conflict of these nervous system responses may account for the arrhythmias of cold water submersion.
Heat transfers very well into water, and body heat is therefore lost extremely quickly in water compared to air, even in merely 'cool' swimming waters around 70F. A water temperature of can lead to death in as little as one hour, and water temperatures hovering at freezing can lead to death in as little as 15 minutes. This is because cold water can have other lethal effects on the body, so hypothermia is not usually a reason for drowning or the clinical cause of death for those who drown in cold water.
Upon submersion into cold water, remaining calm and preventing loss of body heat is paramount. While awaiting rescue, swimming or treading water should be limited to conserve energy and the person should attempt to remove as much of the body from the water as possible; attaching oneself to a buoyant object can improve the chance of survival should unconsciousness occur.
Hypothermia present a risk for survivors of immersion, as for survivors of exposure; in particular the risk increases if the survivor, feeling well again, tries to get up and move, not realizing their core body temperature is still very low and will take a long time to recover.
Most people who experience cold-water drowning do not develop hypothermia quickly enough to decrease cerebral metabolism before ischemia and irreversible hypoxia occur. The neuroprotective effects appear to require water temperatures below about 5 °C.

Diagnosis

The World Health Organization in 2005 defined drowning as "the process of experiencing respiratory impairment from submersion/immersion in liquid". This definition does not imply death, or even the necessity for medical treatment after removal of the cause, nor that any fluid enters the lungs. The WHO further recommended that outcomes should be classified as: death, morbidity, and no morbidity. There was also consensus that the terms wet, dry, active, passive, silent, and secondary drowning should no longer be used.
Experts differentiate between distress and drowning.
Forensic diagnosis of drowning is considered one of the most difficult in forensic medicine. External examination and autopsy findings are often non-specific, and the available laboratory tests are often inconclusive or controversial. The purpose of investigation is generally to distinguish whether the death was due to immersion, or whether the body was immersed post mortem. The mechanism in acute drowning is hypoxemia and irreversible cerebral anoxia due to submersion in liquid.
Drowning would be considered as a possible cause of death when the body was recovered from a body of water, or in close proximity to a fluid which could plausibly have caused drowning, or when found with the head immersed in a fluid. A medical diagnosis of death by drowning is generally made after other possible causes of death have been excluded by means of a complete autopsy and toxicology tests. Indications of drowning are seldom completely unambiguous, and may include bloody froth in the airway, water in the stomach, cerebral oedema and petrous or mastoid haemorrhage. Some evidence of immersion may be unrelated to the cause of death, and lacerations and abrasions may have occurred before or after immersion or death.
Diatoms should normally never be present in human tissue unless water was aspirated, and their presence in tissues such as bone marrow suggests drowning, however, they are present in soil and the atmosphere and samples may easily be contaminated. An absence of diatoms does not rule out drowning, as they are not always present in water. A match of diatom shells to those found in the water may provide supporting evidence of the place of death. Drowning in salt water can leave significantly different concentrations of sodium and chloride ions in the left and right chambers of the heart, but this will dissipate if the person survived for some time after the aspiration, or if CPR was attempted, and have been described in other causes of death.
Most autopsy findings relate to asphyxia and are not specific to drowning. The signs of drowning are degraded by decomposition. Large amounts of froth will be present around the mouth and nostrils and in the upper and lower airways in freshly drowned bodies. The volume of froth is generally much greater in drowning than from other origins. Lung density may be higher than normal but normal weights are possible after cardiac arrest reflex or vaso-vagal reflex. The lungs may be over inflated and waterlogged, filling the thoracic cavity, and the surface may have a marbled appearance, with darker areas associated with collapsed alveoli interspersed with paler aerated areas. Fluid trapped in the lower airways may block the passive collapse that is normal after death. Haemorrhagic bullae of emphysema may be found. These are related to rupture of alveolar walls. These signs, while suggestive of drowning, are not conclusive.

Prevention

It is estimated that more than 85% of drownings could be prevented by supervision, training in water skills, normatives, technology, and public education.
The concept of water safety involves the procedures and policies that are directed to prevent people from drowning or injuring in water.

Management

Rescue

Many people who are drowning manage to save themselves, or are assisted by bystanders or professional rescuers. Less than 6% of people rescued by lifeguards need medical attention, and only 0.5% need CPR. The statistics are not as good for rescue by bystanders, but even there, a minority require CPR.
When a drowning occurs, or a swimmer becomes missing, bystanders should immediately call for help. A lifeguard should be called, if present. If not, emergency medical services and paramedics should be contacted as soon as possible. Rescue, and where necessary, resuscitation, should be started as early as possible. So the person should be taken out of the water as soon as possible.
Rescuers should avoid endangering themselves unnecessarily and, when possible, should assist from a safe position. This assistance usually consists in throwing with precision a flotation instrument. In other cases, the manner to help could be by holding out an object towards the person, but, doing this, the rescuer's body should be laying down, well secured to the ground, to avoid falling to the water too.
In a direct swimming rescue, the initial grasp is important and must be well managed by the rescuer. If something goes wrong, it could happen that an anxious drowning person clings to the rescuer to stand out of the water, submerging the rescuer in the process. To avoid this, it is recommended that the rescuer approaches to the panicking person with a buoyant object, or offering one hand, or even from behind and bending the person's arm against the back to restrict movement. Anyway, if the person pushes the rescuer towards below the water, the rescuer can usually escape diving downwards. After escaping in that manner, it is possible to come back and try a new approach to the drowning person. When the rescuer accomplishes a successful approach, the negatively buoyant objects should be removed. Next, the priority is to transport the person to the water's edge using a tow maneuver. The rescuer usually approaches to the drowning person from behind, and then the person's body is turned face up, and grasped with a secure grip. There are many grips that can be used, but it is common that they grasp the person around the jaw area. The person's mouth and nose must be kept above the water surface. If the person is cooperative, the towing may be in a similar fashion held at the armpits. Unconscious people may be pulled in another similar fashion held at the chin and cheeks, and ensuring that the mouth and nose are well kept above the water. Special care has to be taken for people with suspected spinal injuries, they can require a more specific grip, and a back board may be needed for their rescue.
In unconscious people, an in-water resuscitation could increase the chances of survival by a factor of about three, but this procedure require both medical and swimming skills, and only the breaths of the rescue ventilation are practicable in the water. Chest compressions require a suitable platform, so in-water assessment of circulation is pointless. If the person does not respond after a few breaths, cardiac arrest may be assumed, and getting them out of the water becomes the priority.

First aid

The checks for responsiveness and breathing are carried out with the person horizontally supine. If unconscious but breathing, the recovery position is appropriate.
If not breathing, rescue ventilation is necessary. Drowning can produce a gasping pattern of apnea while the heart is still beating, and ventilation alone may be sufficient. The airway-breathing-circulation sequence should be followed, rather than starting with compressions as is typical in cardiac arrest, because the basic problem is lack of oxygen.
Five initial breaths are recommended, as the initial ventilation may be difficult because of water in the airways which can interfere with effective alveolar inflation. Thereafter a continual sequence of 2 breaths and 30 chest compressions is recommended. This alternance is repeated until vital signs are re-established, the rescuers are unable to continue, or advanced life support is available. For babies, the procedure is slightly modified. In the rescue breaths, the rescuer's mouth covers the baby's mouth and nose at the same time. Besides, the chest compressions are applied pressing with only with two fingers on the chest bone.
Attempts to actively expel water from the airway by abdominal thrusts, Heimlich maneuver or positioning head downwards should be avoided as there is no obstruction by solids, and they delay the start of ventilation and increase the risk of vomiting, with a significantly increased risk of death, as aspiration of stomach contents is a common complication of resuscitation efforts.
Treatment for hypothermia may also be necessary. However, in those who are unconscious, it is recommended their temperature not be increased above 34 degrees C. Because of the diving reflex, people submerged in cold water and apparently drowned may revive after a relatively long period of immersion. Rescuers retrieving a child from water significantly below body temperature should attempt resuscitation even after protracted immersion.

Medical care

People with a near-drowning experience who have normal oxygen levels and no respiratory symptoms should be observed in a hospital environment for a period of time to ensure there are no delayed complications. The target of ventilation is to achieve 92% to 96% arterial saturation and adequate chest rise. Positive end-expiratory pressure will generally improve oxygenation. Drug administration via peripheral veins is preferred over endotracheal administration. Hypotension remaining after oxygenation may be treated by rapid crystalloid infusion. Cardiac arrest in drowning usually presents as asystole or pulseless electrical activity. Ventricular fibrillation is more likely to be associated with complications of pre-existing coronary artery disease, severe hypothermia, or the use of epinephrine or norepinephrine.
While surfactant may be used no high quality evidence exist that looks at this practice. Extracorporeal membrane oxygenation may be used in those who cannot be oxygenated otherwise. Steroids are not recommended.

Prognosis

People who have drowned who arrive at a hospital with spontaneous circulation and breathing usually recover with good outcomes. Early provision of basic and advanced life support improve probability of positive outcome.
Longer duration of submersion is associated with lower probability of survival and higher probability of permanent neurological damage.
Contaminants in the water can cause bronchospasm and impaired gas exchange, and can cause secondary infection with delayed severe respiratory compromise.
Low water temperature can cause ventricular fibrillation, but hypothermia during immersion can also slow the metabolism, allowing a longer hypoxia before severe damage occurs. Hypothermia which reduces brain temperature significantly can improve outcome. A reduction of brain temperature by 10 °C decreases ATP consumption by approximately 50%, which can double the time that the brain can survive.
The younger the person, the better the chances of survival. In one case, a child submerged in cold water for 66 minutes was resuscitated without apparent neurological damage. However, over the long term significant deficits were noted, including a range of cognitive difficulties, particularly general memory impairment, although recent magnetic resonance imaging and magnetoencephalography were within normal range.

Children

Drowning is a major worldwide cause of death and injury in children. Long term neurological outcomes of drowning cannot be predicted accurately during the early stages of treatment and although survival after long submersion times, mostly by young children, has been reported, many survivors will remain severely and permanently neurologically compromised after much shorter submersion times. Factors affecting probability of long term recovery with mild deficits or full function in young children include the duration of submersion, whether advanced life support was needed at the accident site, the duration of cardiopulmonary resuscitation, and whether spontaneous breathing and circulation are present on arrival at the emergency room.
Data on long-term outcome are scarce and unreliable. Neurological examination at the time of discharge from hospital does not accurately predict long term outcomes. Some people with severe brain injury and were transferred to other institutions died months or years after the drowning and are recorded as survivors. Non-fatal drownings have been estimated as two to four times more frequent than fatal drownings.

Epidemiology

In 2013, drowning was estimated to have resulted in 368,000 deaths, down from 545,000 deaths in 1990. There are more than 20 times that many non-fatal incidents. It is the third leading cause of death from unintentional trauma after traffic injuries and falls.
In many countries, drowning is one of the main causes of preventable death for children under 12 years old. In the United States in 2006, 1100 people under 20 years of age died from drowning. The United Kingdom has 450 drownings per year, or 1 per 150,000, whereas in the United States, there are about 6,500 drownings yearly, around 1 per 50,000. In Asia suffocation and drowning were the leading causes of preventable death for children under five years of age; a 2008 report by the organization found that in Bangladesh, for instance, 46 children drown each day.
Males, due to a generally increased likelihood for risk taking, are 4 times more likely to have submersion injuries.
In the fishing industry, the largest group of drownings is associated with vessel disasters in bad weather, followed by man-overboard incidents and boarding accidents at night; either in foreign ports, or under the influence of alcohol. Scuba diving deaths are estimated at 700 to 800 per year, associated with inadequate training and experience, exhaustion, panic, carelessness and barotrauma.

United States

In the United States, drowning is the second leading cause of death in children 12 and younger.
People who drown are more likely to be male, young, or adolescent. Surveys indicate that 10% of children under 5 have experienced a situation with a high risk of drowning. Worldwide, about 175,000 children die through drowning every year. The causes of drowning cases in the US from 1999 to 2006 were as follows:
31.0%Drowning and submersion while in natural water
27.9%Unspecified drowning and submersion
14.5%Drowning and submersion while in swimming pool
9.4%Drowning and submersion while in bathtub
7.2%Drowning and submersion following fall into natural water
6.3%Other specified drowning and submersion
2.9%Drowning and submersion following fall into swimming pool
0.9%Drowning and submersion following fall into bathtub

According to the US National Safety Council, 353 people ages 5 to 24 drowned in 2017.

Society and culture

Old terminology

The word "drowning"—like "electrocution"—was previously used to describe fatal events only, and occasionally that usage is still insisted upon, though the consensus of the medical community supports the definition used in this article. Several terms related to drowning which have been used in the past are also no longer recommended. These include:
Active drowning: People, such as non-swimmers and the exhausted or hypothermic at the surface, who are unable to hold their mouth above water and are suffocating due to lack of air. Instinctively, people in such cases perform well-known behaviors in the last 20–60 seconds before being submerged, representing the body's last efforts to obtain air. Notably, such people are unable to call for help, talk, reach for rescue equipment, or alert swimmers even feet away, and they may drown quickly and silently close to other swimmers or safety.
Dry drowning is a term that has never had an accepted medical definition, and that is currently medically discredited. Following the 2002 World Congress on Drowning in Amsterdam, a consensus definition of drowning was established. Based on this definition, drowning is the "process of experiencing respiratory impairment from submersion/immersion in liquid." This definition resulted in only three legitimate drowning subsets: fatal drowning, non-fatal drowning with illness/injury, and non-fatal drowning without illness/injury. In response, major medical consensus organizations have adopted this definition worldwide and have officially discouraged any medical or publication use of the term "dry drowning". Such organizations include the International Liaison Committee on Resuscitation, the Wilderness Medical Society, the American Heart Association, the Utstein Style system, the International Lifesaving Federation, the International Conference on Drowning, Starfish Aquatics Institute, the American Red Cross, the Centers for Disease Control and Prevention, the World Health Organization and the American College of Emergency Physicians.
Drowning experts have recognized that the end result pathophysiology of hypoxemia, acidemia, and eventual death is the same whether water entered the lung or not. As this distinction does not change management or prognosis, but causes significant confusion due to alternate definitions and misunderstandings, it is generally established that pathophysiological discussions of "dry" versus "wet" drowning are not relevant to drowning care.
"Dry drowning" is frequently cited in the news with a wide variety of definitions. and is often confused with the equally inappropriate and discredited term "secondary drowning" or "delayed drowning". Various conditions including spontaneous pneumothorax, chemical pneumonitis, bacterial or viral pneumonia, head injury, asthma, heart attack, and chest trauma have been misattributed to the erroneous terms "delayed drowning", "secondary drowning", and "dry drowning". Currently, there has never been a case identified in the medical literature where a person was observed to be without symptoms and who died hours or days later as a direct result of drowning alone.

Capital punishment

In Europe, drowning was used as capital punishment. During the Middle Ages, a sentence of death was read using the words "cum fossa et furca", or "with pit and gallows".
Drowning survived as a method of execution in Europe until the 17th and 18th centuries. England had abolished the practice by 1623, Scotland by 1685, Switzerland in 1652, Austria in 1776, Iceland in 1777, and Russia by the beginning of the 1800s. France revived the practice during the French Revolution and it was carried out by Jean-Baptiste Carrier at Nantes.