Dual X-ray absorptiometry and laser


Dual X-ray absorptiometry and laser technique in the area of bone density studies for osteoporosis assessment is an improvement to the DXA Technique, adding an exact laser measurement of the thickness of the region scanned. The addition of object thickness adds a third input to the two x-ray energies used by DXA, better solving the equation for bone and excluding more efficiently these soft tissues components.

Background

The body consists of three main components: bone mineral, lean soft tissue and adipose tissue. These different components have different x-ray attenuating properties.
The standard in bone mineral density scanning developed in the 1980s is called Dual X-ray Absorptiometry, known as DXA. The DXA technique uses two different x-ray energy levels to estimate bone density. DXA scans assume a constant relationship between the amounts of lean soft tissue and adipose tissue. This assumption leads to measurement errors, with an impact on accuracy as well as precision.
To reduce soft-tissue errors in DXA, DXL technology was developed in the late 1990s by a team of Swedish researchers led by Prof. Ragnar Kullenberg. With DXL technology, the region of interest is scanned using low and high energy x-rays as with a DXA scan. The improvement to DXA with DXL is that, for each pixel scanned by DXA, the exact thickness of the measured object is also measured using lasers. The DXL results allow for a more accurate estimation of bone density by using three separate inputs rather than two for each pixel in the measuring region.

DXL - Technical description

Using the DXL technique, for each measuring point the following equations apply:
N1 = N01⋅exp
N2 = N02⋅exp
T = tb + ts + tf
Where:
tb * σb is the unknown bone density that one wants to calculate, e.g. areal mass.

DXL technology used in clinical practice

The DXL technique is used in the bone densitometry system DXL Calscan, manufactured and marketed by the company Demetech AB, Täby, Sweden. Many published studies have evaluated the DXL technique using the DXL Calscan system, which scans the subject’s heel. Several published fracture studies have shown that heel scans using DXL Calscan have an ability to predict fractures as well or better than the DXA technique scanning the hip.