Effective half-life


In pharmacokinetics, the effective half-life is the rate of accumulation or elimination of a biochemical or pharmacological substance in an organism; it is the analogue of biological half-life when the kinetics are governed by multiple independent mechanisms. This is seen when there are multiple mechanisms of elimination, or when a drug occupies multiple pharmacological compartments. It reflects the cumulative effect of the individual half-lives, as observed by the changes in the actual serum concentration of a drug under a given dosing regimen. The complexity of biological systems means that most pharmacological substances do not have a single mechanism of elimination, and hence the observed or effective half-life does not reflect that of a single process, but rather the summation of multiple independent processes.

Radionuclides

When radionuclides are used pharmacologically, for example in radiation therapy, they are eliminated through a combination of radioactive decay and biological excretion. An effective half-life of the drug will involve a decay constant that represents the sum of the biological and physical decay constants, as in the formula:
With the decay constant it is possible to calculate the effective half-life using the formula:
The biological decay constant is often approximated as it is more difficult to accurately determine than the physical decay constant.
Alternatively, since the radioactive decay contributes to the "physical " half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: