Informally, if is a polytope, and is the polytope formed by expanding by a factor of in each dimension, then is the number of integer lattice points in. More formally, consider a lattice in Euclidean space and a -dimensional polytope in with the property that all vertices of the polytope are points of the lattice. For any positive integer, let be the -fold dilation of , and let be the number of lattice points contained in the polytope. Ehrhart showed in 1962 that is a rational polynomial of degree in, i.e. there existrational numbers such that: for all positive integers. The Ehrhart polynomial of the interior of a closedconvex polytope can be computed as: where is the dimension of. This result is known as Ehrhart–Macdonald reciprocity.
Examples
Let be a -dimensional unit hypercube whose vertices are the integer lattice points all of whose coordinates are 0 or 1. In terms of inequalities, Then the -fold dilation of is a cube with side length, containing integer points. That is, the Ehrhart polynomial of the hypercube is. Additionally, if we evaluate at negative integers, then as we would expect from Ehrhart–Macdonald reciprocity. Many other figurate numbers can be expressed as Ehrhart polynomials. For instance, the square pyramidal numbers are given by the Ehrhart polynomials of a square pyramid with an integer unit square as its base and with height one; the Ehrhart polynomial in this case is.
Ehrhart quasi-polynomials
Let be a rational polytope. In other words, suppose where and Then define In this case, is a quasi-polynomial in. Just as with integral polytopes, Ehrhart–Macdonald reciprocity holds, that is,
Examples of Ehrhart quasi-polynomials
Let be a polygon with vertices,, and. The number of integer points in will be counted by the quasi-polynomial
Interpretation of coefficients
If is closed, some of the coefficients of have an easy interpretation:
the leading coefficient,, is equal to the -dimensional volume of, divided by ;
the second coefficient,, can be computed as follows: the lattice induces a lattice on any face of ; take the -dimensional volume of, divide by, and add those numbers for all faces of ;
the constant coefficient is the Euler characteristic of. When is a closed convex polytope,
We can define a generating function for the Ehrhart polynomial of an integral -dimensional polytope as This series can be expressed as a rational function. Specifically, Ehrhart proved that there exist complex numbers,, such that the Ehrhart series of is Additionally, Richard P. Stanley's non-negativity theorem states that under the given hypotheses, will be non-negative integers, for. Another result by Stanley shows that if is a lattice polytope contained in, then for all. The -vector is in general not unimodal, but it is whenever it is symmetric, and the polytope has a regular unimodal triangulation.
Ehrhart series for rational polytopes
As in the case of polytopes with integer vertices, one defines the Ehrhart series for a rational polytope. For a d-dimensional rational polytope, where is the smallest integer such that is an integer polytope, then one has where the are still non-negative integers.
Non-leading coefficient bounds
The polynomial's non-leading coefficients in the representation can be upper bounded: where is a Stirling number of the first kind. Lower bounds also exist.
Toric variety
The case and of these statements yields Pick's theorem. Formulas for the other coefficients are much harder to get; Todd classes of toric varieties, the Riemann–Roch theorem as well as Fourier analysis have been used for this purpose. If is the toric variety corresponding to the normal fan of, then defines an ample line bundle on, and the Ehrhart polynomial of coincides with the Hilbert polynomial of this line bundle. Ehrhart polynomials can be studied for their own sake. For instance, one could ask questions related to the roots of an Ehrhart polynomial. Furthermore, some authors have pursued the question of how these polynomials could be classified.
Generalizations
It is possible to study the number of integer points in a polytope if we dilate some facets of but not others. In other words, one would like to know the number of integer points in semi-dilated polytopes. It turns out that such a counting function will be what is called a multivariate quasi-polynomial. An Ehrhart-type reciprocity theorem will also hold for such a counting function. Counting the number of integer points in semi-dilations of polytopes has applications in enumerating the number of different dissections of regular polygons and the number of non-isomorphic unrestricted codes, a particular kind of code in the field of coding theory.