Eicosanoid receptor


Most of the eicosanoid receptors are integral membrane protein G protein-coupled receptors that bind and respond to eicosanoid signaling molecules. Eicosanoids are rapidly metabolized to inactive products and therefore are short-lived. Accordingly, the eicosanoid-receptor interaction is typically limited to a local interaction: cells, upon stimulation, metabolize arachidonic acid to an eicosanoid which then binds cognate receptors on either its parent cell or on nearby cells to trigger functional responses within a restricted tissue area, e.g. an inflammatory response to an invading pathogen. In some cases, however, the synthesized eicosanoid travels through the blood to trigger systemic or coordinated tissue responses, e.g. prostaglandin E2 released locally travels to the hypothalamus to trigger a febrile reaction. An example of a non-GPCR receptor that binds many eicosanoids is the PPAR-γ nuclear receptor.
The following is a list of human eicosanoid GPCRs grouped according to the type of eicosanoid ligand that each binds:

Leukotriene

s:
Es:
s and Prostaglandin receptors
Prostanoids are prostaglandins, thromboxanes, and prostacyclins. Seven, structurally-related, prostanoid receptors fall into three categories based on the cell activation pathways and activities which they regulate. Relaxant prostanoid receptors raise cellular cAMP levels; contractile prostanoid receptors mobilize intracellular calcium; and the inhibitory prostanoid receptor lowers cAMP levels. A final prostanoid receptor, DP2, is structurally related to the chemotaxis class of receptors and unlike the other prostanoid receptors mediates eosinophil, basophil, and T helper cell chemotactic responses. Prostanoids, particularly PGE2 and PGI2, are prominent regulators of inflammation and allergic responses as defined by studies primarily in animal models but also as suggested by studies with human tissues and, in certain cases, human subjects.