Electrolysis


In chemistry and manufacturing, electrolysis is a technique that uses direct electric current to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential.

History

The word "electrolysis" was introduced by Michael Faraday in the 19th century, on the suggestion of the Rev. William Whewell, using the Greek words ἤλεκτρον "amber", which since the 17th century was associated with electric phenomena, and λύσις meaning "dissolution". Nevertheless, electrolysis, as a tool to study chemical reactions and obtain pure elements, precedes the coinage of the term and formal description by Faraday.
In the early nineteenth century, William Nicholson and Anthony Carlisle sought to further Volta's experiments. They attached two wires to either side of Volta's battery and placed the other ends in a tube filled with water. They noticed when the wires were brought together that each wire produced bubbles. One type was hydrogen, the other was oxygen.
In 1785 a Dutch Scientist named Martinus Van Marum created an electrostatic generator that he used to reduce tin, zinc and antimony from their salts using a process later known as electrolysis. Though he unknowingly produced electrolysis it was not until 1800 when William Nicholson and Anthony Carlisle discovered how electrolysis works.
In 1791 Luigi Galvani experimented with frog legs. He claimed that placing animal muscle between two dissimilar metal sheets resulted in electricity. Responding to these claims, Alessandro Volta conducted his own tests. This would give insight to Humphry Davy's ideas on electrolysis. During preliminary experiments, Humphry Davy hypothesized that when two elements combine together to form a compound, electrical energy is released. Humphry Davy would go on to create Decomposition Tables from his preliminary experiments on Electrolysis. The Decomposition Tables would give insight on the energies needed to break apart certain compounds.
In 1817 Johan August Arfwedson determined there was another element, lithium, in some of his samples, however, he could not isolate the component. It was not until 1821 when William Thomas Brande used electrolysis to single it out. Two years later, he streamlined the process using lithium chloride and potassium chloride with electrolysis to produce lithium and lithium hydroxide.
During the later years of Humphry Davy's research, Michael Faraday became his assistant. While studying the process of electrolysis under Humphry Davy, Michael Faraday discovered two laws of electrolysis.
During the time of Maxwell and Faraday, concerns came about for electropositive and electronegative activities.
In November 1875, Paul Émile Lecoq de Boisbaudran discovered gallium using electrolysis of gallium hydroxide, producing 3.4 mg of gallium. That following December, he presented his discovery of gallium to the Academie des Science in Paris.
On June 26, 1886, Ferdinand Frederick Henri Moissan finally felt comfortable performing electrolysis on anhydrous hydrogen fluoride to create a gaseous fluorine pure element. Before he used hydrogen fluoride, Henri Moissan used fluoride salts with electrolysis. Thus on June 28, 1886 he performed his experiment in front of the Academie des Science to show his discovery of the new element fluorine. In the cost of trying to find elemental fluorine through electrolysis of fluoride salts, many chemists perished including Pauline Louyet and Jerome Nickels.
In 1886 Charles Martin Hall from America and Paul Héroult from France both filed for American patents, with Héroult submitting his in May and Hall’s in July. Hall was able to get his patent by proving through letters to his brother and family evidence that his method was discovered before the French patent was submitted. This became known as the Hall-Héroult process which benefited many industries because the price of aluminum had dropped from four dollars to thirty cents per pound.

Timeline

Electrolysis is the passing of a direct electric current through an electrolyte producing chemical reactions at the electrodes and decomposition of the materials.
The main components required to achieve electrolysis are an electrolyte, electrodes, and an external power source. A partition is optional to keep the products from diffusing to the vicinity of the opposite electrode.
The electrolyte is a conductive ionic chemical substance which contains free ions and carries electric current. If the ions are not mobile, as in most solid salts, then electrolysis cannot occur. A liquid electrolyte is produced by:
The electrodes are immersed separated by a distance such that a current flows between them through the electrolyte and are connected to the power source which completes the electrical circuit. A direct current supplied by the power source drives the reaction causing ions in the electrolyte to be attracted toward the respective oppositely charged electrode.
Electrodes of metal, graphite and semiconductor material are widely used. Choice of suitable electrode depends on chemical reactivity between the electrode and electrolyte and manufacturing cost. Historically, when non-reactive anodes were desired for electrolysis, graphite or platinum were chosen. They were found to be some of the least reactive materials for anodes. Platinum erodes very slowly compared to other materials, and graphite crumbles and can produce carbon dioxide in aqueous solutions but otherwise does not participate in the reaction. Cathodes may be made of the same material, or they may be made from a more reactive one since anode wear is greater due to oxidation at the anode.

Process of electrolysis

The key process of electrolysis is the interchange of atoms and ions by the removal or addition of electrons due to the applied current. The desired products of electrolysis are often in a different physical state from the electrolyte and can be removed by physical processes.
The quantity of the products is proportional to the current, and when two or more electrolytic cells are connected in series to the same power source, the products produced in the cells are proportional to their equivalent weight. These are known as Faraday's laws of electrolysis.
Each electrode attracts ions that are of the opposite charge. Positively charged ions move towards the electron-providing cathode. Negatively charged ions move towards the electron-extracting anode. In this process electrons are effectively introduced at the cathode as a reactant and removed at the anode as a product. In chemistry, the loss of electrons is called oxidation, while electron gain is called reduction.
When neutral atoms or molecules, such as those on the surface of an electrode, gain or lose electrons they become ions and may dissolve in the electrolyte and react with other ions.
When ions gain or lose electrons and become neutral, they may form compounds that separate from the electrolyte. Positive metal ions like Cu2+ deposit onto the cathode in a layer. The terms for this are electroplating, electrowinning, and electrorefining.
When an ion gains or loses electrons without becoming neutral, its electronic charge is altered in the process.
For example, the electrolysis of brine produces hydrogen and chlorine gases which bubble from the electrolyte and are collected. The initial overall reaction is thus:
The reaction at the anode results in chlorine gas from chlorine ions:
The reaction at the cathode results in hydrogen gas and hydroxide ions:
Without a partition between the electrodes, the OH ions produced at the cathode are free to diffuse throughout the electrolyte to the anode. As the electrolyte becomes more basic due to the production of OH, less Cl2 emerges from the solution as it begins to react with the hydroxide producing hypochlorite at the anode:
The more opportunity the Cl2 has to interact with NaOH in the solution, the less Cl2 emerges at the surface of the solution and the faster the production of hypochlorite progresses. This depends on factors such as solution temperature, the amount of time the Cl2 molecule is in contact with the solution, and concentration of NaOH.
Likewise, as hypochlorite increases in concentration, chlorates are produced from them:
Other reactions occur, such as the self-ionization of water and the decomposition of hypochlorite at the cathode, the rate of the latter depends on factors such as diffusion and the surface area of the cathode in contact with the electrolyte.

Decomposition potential

Decomposition potential or decomposition voltage refers to the minimum voltage between anode and cathode of an electrolytic cell that is needed for electrolysis to occur.
The voltage at which electrolysis is thermodynamically preferred is the difference of the electrode potentials as calculated using the Nernst equation. Applying additional voltage, referred to as overpotential, can increase the rate of reaction and is often needed above the thermodynamic value. It is especially necessary for electrolysis reactions involving gases, such as oxygen, hydrogen or chlorine.

Oxidation and reduction at the electrodes

of ions or neutral molecules occurs at the anode. For example, it is possible to oxidize ferrous ions to ferric ions at the anode:
Reduction of ions or neutral molecules occurs at the cathode. It is possible to reduce ferricyanide ions to ferrocyanide ions at the cathode:
Neutral molecules can also react at either of the electrodes. For example: p-Benzoquinone can be reduced to hydroquinone at the cathode:
+ 2 e + 2 H+
In the last example, H+ ions also take part in the reaction and are provided by the acid in the solution, or by the solvent itself. Electrolysis reactions involving H+ ions are fairly common in acidic solutions. In aqueous alkaline solutions, reactions involving OH are common.
Sometimes the solvents themselves are oxidized or reduced at the electrodes. It is even possible to have electrolysis involving gases, e.g. by using a gas diffusion electrode.

Energy changes during electrolysis

The amount of electrical energy that must be added equals the change in Gibbs free energy of the reaction plus the losses in the system. The losses can be arbitrarily close to zero, so the maximum thermodynamic efficiency equals the enthalpy change divided by the free energy change of the reaction. In most cases, the electric input is larger than the enthalpy change of the reaction, so some energy is released in the form of heat. In some cases, for instance, in the electrolysis of steam into hydrogen and oxygen at high temperature, the opposite is true and heat energy is absorbed. This heat is absorbed from the surroundings, and the heating value of the produced hydrogen is higher than the electric input.

Variations

results in products different from DC. For example, pulsing increases the ratio of ozone to oxygen produced at the anode in the electrolysis of an aqueous acidic solution such as dilute sulphuric acid. Electrolysis of ethanol with pulsed current evolves an aldehyde instead of primarily an acid.

Related techniques

The following techniques are related to electrolysis:
In manufacturing, electrolysis can be used for:
Using a cell containing inert platinum electrodes, electrolysis of aqueous solutions of some salts leads to the reduction of the cations and oxidation of the anions. However, with salts of some metals hydrogen is evolved at the cathode, and for salts containing some anions oxygen is evolved at the anode. In both cases, this is due to water being reduced to form hydrogen or oxidized to form oxygen.
In principle, the voltage required to electrolyze a salt solution can be derived from the standard electrode potential for the reactions at the anode and cathode. The standard electrode potential is directly related to the Gibbs free energy, ΔG, for the reactions at each electrode and refers to an electrode with no current flowing. An extract from the table of standard electrode potentials is shown below.
Half-reaction Ref.
Na+ + e Na−2.71
Zn2+ + 2e Zn−0.7618
2H+ + 2e H2≡ 0
Br2 + 2e 2Br+1.0873
O2 + 4H+ + 4e 2H2O+1.23
Cl2 + 2e 2Cl+1.36
+ 2e 2+2.07

In terms of electrolysis, this table should be interpreted as follows:
Using the Nernst equation the electrode potential can be calculated for a specific concentration of ions, temperature and the number of electrons involved. For pure water :
Comparable figures calculated in a similar way, for 1M zinc bromide, ZnBr2, are −0.76 V for the reduction to Zn metal and +1.10 V for the oxidation producing bromine.
The conclusion from these figures is that hydrogen should be produced at the cathode and oxygen at the anode from the electrolysis of water—which is at variance with the experimental observation that zinc metal is deposited and bromine is produced.
The explanation is that these calculated potentials only indicate the thermodynamically preferred reaction. In practice, many other factors have to be taken into account such as the kinetics of some of the reaction steps involved. These factors together mean that a higher potential is required for the reduction and oxidation of water than predicted, and these are termed overpotentials. Experimentally it is known that overpotentials depend on the design of the cell and the nature of the electrodes.
For the electrolysis of a neutral sodium chloride solution, the reduction of sodium ion is thermodynamically very difficult and water is reduced evolving hydrogen leaving hydroxide ions in solution. At the anode the oxidation of chlorine is observed rather than the oxidation of water since the overpotential for the oxidation of chloride to chlorine is lower than the overpotential for the oxidation of water to oxygen. The hydroxide ions and dissolved chlorine gas react further to form hypochlorous acid. The aqueous solutions resulting from this process is called electrolyzed water and is used as a disinfectant and cleaning agent.

Research trends

Electrolysis of carbon dioxide

The electrochemical reduction or electrocatalytic conversion of CO2 can produce value-added chemicals such methane, ethylene, ethane, etc. The electrolysis of carbon dioxide gives formate or carbon monoxide, but sometimes more elaborate organic compounds such as ethylene. This technology is under research as a carbon-neutral route to organic compounds.

Electrolysis of acidified water

Electrolysis of water produces hydrogen and oxygen in a ratio of 2 to 1 respectively.
The energy efficiency of water electrolysis varies widely. The efficiency of an electrolyzer is a measure of the enthalpy contained in the hydrogen, compared with the input electrical energy. Heat/enthalpy values for hydrogen are well published in science and engineering texts, as 144 MJ/kg. Note that fuel cells cannot use this full amount of heat/enthalpy, which has led to some confusion when calculating efficiency values for both types of technology. In the reaction, some energy is lost as heat. Some reports quote efficiencies between 50% and 70% for alkaline electrolyzers; however, much higher practical efficiencies are available with the use of polymer electrolyte membrane electrolysis and catalytic technology, such as 95% efficiency.
The National Renewable Energy Laboratory estimated that 1 kg of hydrogen could be produced by wind powered electrolysis for between $5.55 in the near term and $2.27 in the long term.
About 4% of hydrogen gas produced worldwide is generated by electrolysis, and normally used onsite. Hydrogen is used for the creation of ammonia for fertilizer via the Haber process, and converting heavy petroleum sources to lighter fractions via hydrocracking. Recently, onsite electrolysis has been utilised to capture hydrogen for hydrogen fuel-cells in hydrogen vehicles.

Carbon/hydrocarbon assisted water electrolysis

Recently, to reduce the energy input, the utilization of carbon, alcohols, and organic solution with co-electrolysis of water has been proposed as a viable option. The carbon/hydrocarbon assisted water electrolysis process for hydrogen generation would perform this operation in a single electrochemical reactor. This system energy balance can be required only around 40% electric input with 60% coming from the chemical energy of carbon or hydrocarbon. This process utilizes solid coal/carbon particles or powder as fuels dispersed in acid/alkaline electrolyte in the form of slurry and the carbon contained source co-assist in the electrolysis process as following theoretical overall reactions:
Carbon/Coal slurry -> CO2 + 2H2 E' = 0.21 V / E' = 0.46 V
or
Carbon/Coal slurry / E' = 0.91 V
Thus, this CAWE approach is that the actual cell overpotential can be significantly reduced to below 1 V as compared to 1.5 V for conventional water electrolysis.

Electrocrystallization

A specialized application of electrolysis involves the growth of conductive crystals on one of the electrodes from oxidized or reduced species that are generated in situ. The technique has been used to obtain single crystals of low-dimensional electrical conductors, such as charge-transfer salts and linear chain compounds