Energy flow (ecology)



Left: Energy flow diagram of a frog. The frog represents a node in an extended food web. The energy ingested is utilized for metabolic processes and transformed into biomass. The energy flow continues on its path if the frog is ingested by predators, parasites, or as a decaying carcass in soil. This energy flow diagram illustrates how energy is lost as it fuels the metabolic process that transform the energy and nutrients into biomass.
Right: An expanded three link energy food chain illustrating the relationship between food flow diagrams and energy transformity. The transformity of energy becomes degraded, dispersed, and diminished from higher quality to lesser quantity as the energy within a food chain flows from one trophic species into another The study of the flow of energy within an ecological system from the time the energy enters the living system until it is ultimately degraded to heat and irretrievably lost from the system. It is also referred to as production ecology, because ecologists use the word production to describe the process of energy input and storage in ecosystems. Abbreviations: I=input, A=assimilation, R=respiration, NU=not utilized, P=production, B=biomass.



In ecology, energy flow, also called the calorific flow, refers to the flow of energy through a food chain, and is the focus of study in ecological energetics. In an ecosystem, ecologists seek to quantify the relative importance of different component species and feeding relationships.
A general energy flow scenario follows:
The energy is passed on from trophic level to trophic level and each time about 90% of the energy is lost, with some being lost as heat into the environment and some being lost as incompletely digested food. Therefore, primary consumers get about 10% of the energy produced by autotrophs, while secondary consumers get 1% and tertiary consumers get 0.1%. This means the top consumer of a food chain receives the least energy, as much of the food chain's energy has been lost between trophic levels. This loss of energy at each level limits typical food chains to only four to six links.

History of ecological energetics

Ecological energetics appears to have grown out of the Age of Enlightenment and the concerns of the Physiocrats. It began in the works of Sergei Podolinsky in the late 1800s, and subsequently was developed by the Soviet ecologist Vladmir Stanchinsky, the Austro-American Alfred J. Lotka, and American limnologists, Raymond Lindeman and G. Evelyn Hutchinson. It underwent substantial development by Howard T. Odum and was applied by systems ecologists, and radiation ecologists.