Equinox


An equinox is commonly regarded as the instant of time when the plane of Earth's equator passes through the center of the Sun. This occurs twice each year, around 20 March and 23 September. In other words, it is the moment at which the center of the visible Sun is directly above the equator.
The word is derived from the Latin aequinoctium, from aequus and nox . On the day of an equinox, daytime and nighttime are of approximately equal duration all over the planet. They are not exactly equal, however, due to the angular size of the Sun, atmospheric refraction, and the rapidly changing duration of the length of day that occurs at most latitudes around the equinoxes. Long before conceiving this equality, primitive equatorial cultures noted the day when the Sun rises due east and sets due west, and indeed this happens on the day closest to the astronomically defined event.
In the Northern Hemisphere, the March equinox is called the vernal or spring equinox while the September equinox is called the autumnal or fall equinox. In the Southern Hemisphere, the reverse is true. The dates slightly vary due to leap years and other factors.
Since the Moon causes Earth's orbit to slightly vary from a perfect ellipse, the equinox is officially defined by the Sun's more regular ecliptic longitude rather than by its declination. The instants of the equinoxes are currently defined to be when the apparent geocentric longitude of the Sun is 0° and 180°.
, Fondachelli-Fantina, Sicily

Equinoxes on Earth

General

Systematically observing the sunrise, people discovered that it occurs between two extreme locations at the horizon and eventually noted the midpoint between the two. Later it was realized that this happens on a day when the durations of the day and the night are practically equal and the word "equinox" comes from Latin aequus, meaning "equal", and nox, meaning "night".
In the northern hemisphere, the vernal equinox conventionally marks the beginning of spring in most cultures and is considered the start of the New Year in the Assyrian calendar, Hindu, and the Persian or Iranian calendars, while the autumnal equinox marks the beginning of autumn.
The equinoxes are the only times when the solar terminator is perpendicular to the equator. As a result, the northern and southern hemispheres are equally illuminated.
For the same reason, this is also the time when the Sun rises for an observer at one of Earth's rotational poles and sets at the other; for a brief period, both North and South Poles are in daylight.
In other words, the equinoxes are the only times when the subsolar point is on the equator, meaning that the Sun is exactly overhead at a point on the equatorial line. The subsolar point crosses the equator moving northward at the March equinox and southward at the September equinox.

Date

When Julius Caesar established the Julian calendar in 45 BC, he set 25 March as the date of the spring equinox; this was already the starting day of the year in the Persian and Indian calendars. Because the Julian year is longer than the tropical year by about 11.3 minutes on average, the calendar "drifted" with respect to the two equinoxes – so that in 300 AD the spring equinox occurred on about 21 March, and by 1500 AD it had drifted backwards to 11 March.
This drift induced Pope Gregory XIII to establish the modern Gregorian calendar. The Pope wanted to continue to conform with the edicts of the Council of Nicaea in 325 AD concerning the date of Easter, which means he wanted to move the vernal equinox to the date on which it fell at that time, and to maintain it at around that date in the future, which he achieved by reducing the number of leap years from 100 to 97 every 400 years. However, there remained a small residual variation in the date and time of the vernal equinox of about ±27 hours from its mean position, virtually all because the distribution of 24 hour centurial leap-days causes large jumps. This in turn raised the possibility that it could fall on 22 March, and thus Easter Day might theoretically commence before the equinox. The consulting astronomers chose the appropriate number of days to omit so that the equinox would swing from 19 to 21 March but never fall on 22 March.

Modern dates

The dates of the equinoxes change progressively during the leap-year cycle, because the Gregorian calendar year is not commensurate with the period of the Earth's revolution about the Sun. It is only after a complete Gregorian leap-year cycle of 400 years that the seasons commence at approximately the same time. In the 21st century the earliest March equinox will be 19 March 2096, while the latest was 21 March 2003. The earliest September equinox will be 21 September 2096 while the latest was 23 September 2003.

Names

Day is usually defined as the period when sunlight reaches the ground in the absence of local obstacles. On the date of the equinox, the center of the Sun spends a roughly equal amount of time above and below the horizon at every location on the Earth, so night and day are about the same length. Sunrise and sunset can be defined in several ways, but a widespread definition is the time that the top limb of the Sun is level with the horizon. With this definition, the day is longer than the night at the equinoxes:
  1. From the Earth, the Sun appears as a disc rather than a point of light, so when the centre of the Sun is below the horizon, its upper edge may be visible. Sunrise, which begins daytime, occurs when the top of the Sun's disk appears above the eastern horizon. At that instant, the disk's centre is still below the horizon.
  2. The Earth's atmosphere refracts sunlight. As a result, an observer sees daylight before the top of the Sun's disk appears above the horizon.
In sunrise/sunset tables, the atmospheric refraction is assumed to be 34 arcminutes, and the assumed semidiameter of the Sun is 16 arcminutes. Their combination means that when the upper limb of the Sun is on the visible horizon, its centre is 50 arcminutes below the geometric horizon, which is the intersection with the celestial sphere of a horizontal plane through the eye of the observer.
These effects make the day about 14 minutes longer than the night at the equator and longer still towards the poles. The real equality of day and night only happens in places far enough from the equator to have a seasonal difference in day length of at least 7 minutes, actually occurring a few days towards the winter side of each equinox.
The times of sunset and sunrise vary with the observer's location, so the dates when day and night are equal also depend upon the observer's location.
A third correction for the visual observation of a sunrise is the angle between the apparent horizon as seen by an observer and the geometric horizon. This is known as the dip of the horizon and varies from 3 arcminutes for a viewer standing on the sea shore to 160 arcminutes for a mountaineer on Everest. The effect of a larger dip on taller objects accounts for the phenomenon of snow on a mountain peak turning gold in the sunlight long before the lower slopes are illuminated.
The date on which the day and night are exactly the same is known as an equilux; the neologism, believed to have been coined in the 1980s, achieved more widespread recognition in the 21st century. At the most precise measurements, a true equilux is rare, because the lengths of day and night change more rapidly than any other time of the year around the equinoxes. In the mid-latitudes, daylight increases or decreases by about three minutes per day at the equinoxes, and thus adjacent days and nights only reach within one minute of each other. The date of the closest approximation of the equilux varies slightly by latitude; in the mid-latitudes, it occurs a few days before the spring equinox and after the fall equinox in each respective hemisphere.

Geocentric view of the astronomical seasons

In the half-year centered on the June solstice, the Sun rises north of east and sets north of west, which means longer days with shorter nights for the northern hemisphere and shorter days with longer nights for the southern hemisphere. In the half-year centered on the December solstice, the Sun rises south of east and sets south of west and the durations of day and night are reversed.
Also on the day of an equinox, the Sun rises everywhere on Earth at about 06:00 and sets at about 18:00. These times are not exact for several reasons:
Some of the statements above can be made clearer by picturing the day arc. The pictures show this for every hour on equinox day. In addition, some 'ghost' suns are also indicated below the horizon, up to 18° below it; the Sun in such areas still causes twilight. The depictions presented below can be used for both the northern and the southern hemispheres. The observer is understood to be sitting near the tree on the island depicted in the middle of the ocean; the green arrows give cardinal directions.
The following special cases are depicted:

Celestial coordinate systems

The March equinox occurs about when the Sun appears to cross the celestial equator northward. In the Northern Hemisphere, the term vernal point is used for the time of this occurrence and for the precise direction in space where the Sun exists at that time. This point is the origin of some celestial coordinate systems, which are usually rooted to an astronomical epoch since it gradually varies over time:
being zero and the Sun's declination being zero. The Sun's celestial latitude never exceeds 1.2 arcseconds, but is exaggerated in this diagram.
Strictly speaking, at the equinox, the Sun's ecliptic longitude is zero. Its latitude will not be exactly zero, since Earth is not exactly in the plane of the ecliptic. Its declination will not be exactly zero either. The mean ecliptic is defined by the barycenter of Earth and the Moon combined, so the Earth wanders slightly above and below the ecliptic due to the orbital tilt of the Moon. The modern definition of equinox is the instants when the Sun's apparent geocentric longitude is 0° or 180°. See the adjacent diagram.
Because of the precession of the Earth's axis, the position of the vernal point on the celestial sphere changes over time, and the equatorial and the ecliptic coordinate systems change accordingly. Thus when specifying celestial coordinates for an object, one has to specify at what time the vernal point and the celestial equator are taken. That reference time is called the equinox of date.
The upper culmination of the vernal point is considered the start of the sidereal day for the observer. The hour angle of the vernal point is, by definition, the observer's sidereal time.
Using the current official IAU constellation boundaries – and taking into account the variable precession speed and the rotation of the celestial equator – the equinoxes shift through the constellations as follows :
The equinoxes are sometimes regarded as the start of spring and autumn. A number of traditional harvest festivals are celebrated on the date of the equinoxes.

Effects on satellites

One effect of equinoctial periods is the temporary disruption of communications satellites. For all geostationary satellites, there are a few days around the equinox when the Sun goes directly behind the satellite relative to Earth for a short period each day. The Sun's immense power and broad radiation spectrum overload the Earth station's reception circuits with noise and, depending on antenna size and other factors, temporarily disrupt or degrade the circuit. The duration of those effects varies but can range from a few minutes to an hour.
Satellites in geostationary orbit also experience difficulties maintaining power during the equinox, due to the fact that they now have to travel through Earth's shadow and rely only on battery power. Usually, a satellite will travel either north or south of the Earth's shadow due to its shifted axis throughout the year. During the equinox, since geostationary satellites are situated above the Equator, they will be put into Earth's shadow for the longest duration all year.

Equinoxes on other planets

Equinoxes occur on any planet with a tilted rotational axis. A dramatic example is Saturn, where the equinox places its ring system edge-on facing the Sun. As a result, they are visible only as a thin line when seen from Earth. When seen from above – a view seen during an equinox for the first time from the Cassini space probe in 2009 – they receive very little sunshine, indeed more planetshine than light from the Sun. This phenomenon occurs once every 14.7 years on average, and can last a few weeks before and after the exact equinox. Saturn's most recent equinox was on 11 August 2009, and its next will take place on 6 May 2025.
Mars's most recent equinox was on 8 April 2020, and the next will be on 7 February 2021.

Footnotes