Ext functor
In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.
In the special case of abelian groups, Ext was introduced by Reinhold Baer. It was named by Samuel Eilenberg and Saunders MacLane, and applied to topology. For modules over any ring, Ext was defined by Henri Cartan and Eilenberg in their 1956 book Homological Algebra.
Definition
Let R be a ring and let R-Mod be the category of modules over R. For a fixed R-module A, let T = HomR for B in R-Mod. This is a left exact functor from R-Mod to the category of abelian groups Ab, and so it has right derived functors RiT. The Ext groups are the abelian groups defined byfor an integer i. By definition, this means: take any injective resolution
remove the term B, and form the cochain complex:
For each integer i, Ext is the cohomology of this complex at position i. It is zero for i negative. For example, Ext is the kernel of the map HomR → HomR, which is isomorphic to HomR.
An alternative definition uses the functor G=HomR, for a fixed R-module B. This is a contravariant functor, which can be viewed as a left exact functor from the opposite category op to Ab. The Ext groups are defined as the right derived functors RiG:
That is, choose any projective resolution
remove the term A, and form the cochain complex:
Then Ext is the cohomology of this complex at position i.
Cartan and Eilenberg showed that these constructions are independent of the choice of projective or injective resolution, and that both constructions yield the same Ext groups. Moreover, for a fixed ring R, Ext is a functor in each variable.
For a commutative ring R and R-modules A and B, Ext is an R-module. For a non-commutative ring R, Ext is only an abelian group, in general. If R is an algebra over a ring S, then Ext is at least an S-module.
Properties of Ext
Here are some of the basic properties and computations of Ext groups.- Ext ≅ HomR for any R-modules A and B.
- Ext = 0 for all i > 0 if the R-module A is projective or if B is injective.
- The converses also hold:
- *If Ext = 0 for all B, then A is projective.
- *If Ext = 0 for all A, then B is injective.
- for all i ≥ 2 and all abelian groups A and B.
- If R is a commutative ring and u in R is not a zero divisor, then
- Generalizing the previous example, one can compute Ext groups when the first module is the quotient of a commutative ring by any regular sequence, using the Koszul complex. For example, if R is the polynomial ring k over a field k, then Ext is the exterior algebra S over k on n generators in Ext1. Moreover, Ext is the polynomial ring R; this is an example of Koszul duality.
- By the general properties of derived functors, there are two basic exact sequences for Ext. First, a short exact sequence 0 → K → L → M → 0 of R-modules induces a long exact sequence of the form
- Ext takes direct sums in the first variable and products in the second variable to products. That is:
- Let A be a finitely generated module over a commutative Noetherian ring R. Then Ext commutes with localization, in the sense that for every multiplicatively closed set S in R, every R-module B, and every integer i,
Ext and extensions
Equivalence of extensions
The Ext groups derive their name from their relation to extensions of modules. Given R-modules A and B, an extension of A by B is a short exact sequence of R-modulesTwo extensions
are said to be equivalent if there is a commutative diagram:
Note that the Five lemma implies that the middle arrow is an isomorphism. An extension of A by B is called split if it is equivalent to the trivial extension
There is a one-to-one correspondence between equivalence classes of extensions of A by B and elements of Ext. The trivial extension corresponds to the zero element of Ext.
The Baer sum of extensions
The Baer sum is an explicit description of the abelian group structure on Ext, viewed as the set of equivalence classes of extensions of A by B. Namely, given two extensionsand
first form the pullback over,
Then form the quotient module
The Baer sum of E and E′ is the extension
where the first map is and the second is.
Up to equivalence of extensions, the Baer sum is commutative and has the trivial extension as identity element. The negative of an extension 0 → B → E → A → 0 is the extension involving the same module E, but with the homomorphism E → A replaced by its negative.
Construction of Ext in abelian categories
defined the abelian groups Ext for objects A and B in any abelian category C; this agrees with the definition in terms of resolutions if C has enough projectives or enough injectives. First, Ext = HomC. Next, Ext is the set of equivalence classes of extensions of A by B, forming an abelian group under the Baer sum. Finally, the higher Ext groups Ext are defined as equivalence classes of n-extensions, which are exact sequencesunder the equivalence relation generated by the relation that identifies two extensions
if there are maps for all m in so that every resulting square commutes, that is, if there is a chain map ξ → ξ' which is the identity on A and B.
The Baer sum of two n-extensions as above is formed by letting be the pullback of and over A, and be the pushout of and under B. Then the Baer sum of the extensions is
The derived category and the Yoneda product
An important point is that Ext groups in an abelian category C can be viewed as sets of morphisms in a category associated to C, the derived category D. The objects of the derived category are complexes of objects in C. Specifically, one haswhere an object of C is viewed as a complex concentrated in degree zero, and means shifting a complex i steps to the left. From this interpretation, there is a bilinear map, sometimes called the Yoneda product:
which is simply the composition of morphisms in the derived category.
The Yoneda product can also be described in more elementary terms. For i = j = 0, the product is the composition of maps in the category C. In general, the product can be defined by splicing together two Yoneda extensions.
Alternatively, the Yoneda product can be defined in terms of resolutions. For example, let R be a ring, with R-modules A, B, C, and let P, Q, and T be projective resolutions of A, B, C. Then Ext can be identified with the group of chain homotopy classes of chain maps P → Q. The Yoneda product is given by composing chain maps:
By any of these interpretations, the Yoneda product is associative. As a result, is a graded ring, for any R-module A. For example, this gives the ring structure on group cohomology since this can be viewed as. Also by associativity of the Yoneda product: for any R-modules A and B, is a module over.
Important special cases
- Group cohomology is defined by, where G is a group, M is a representation of G over the integers, and is the group ring of G.
- For an algebra A over a field k and an A-bimodule M, Hochschild cohomology is defined by
- Lie algebra cohomology is defined by, where is a Lie algebra over a commutative ring k, M is a -module, and is the universal enveloping algebra.
- For a topological space X, sheaf cohomology can be defined as Here Ext is taken in the abelian category of sheaves of abelian groups on X, and is the sheaf of locally constant -valued functions.
- For a commutative Noetherian local ring R with residue field k, is the universal enveloping algebra of a graded Lie algebra π* over k, known as the homotopy Lie algebra of R. There is a natural homomorphism of graded Lie algebras from the André–Quillen cohomology D* to π*, which is an isomorphism if k has characteristic zero.