Ford straight-six engine


In 1906-1907, Ford's first straight-6 engine was introduced in the Model K. Henry Ford did not like the car because the engine could overpower its transmission.
The next Ford six was introduced in the 1941 Ford. The Ford Motor Company of America continued producing straight-six engines until 1996, when they were discontinued in favor of more compact V6 designs. Ford Australia manufactured these engines for their Falcon and Ford Territory vehicles until October 2016.

First generation

The first-generation Ford six-cylinder engines were all flatheads. They were the G- and H-series engines of used in cars and trucks and the M-series of used in larger Ford trucks and for industrial applications.

226

Introduced with the 1941 model year, the first Ford L-6 displaced and produced, the same as the Flathead V-8 that year. Like the V-8, it was also a flathead or L-head engine. In 1948, Ford raised the compression of the flathead six or L-6 so that it generated and of torque. The G- and H-series engines were used in the full-sized Ford cars and trucks to replace the smaller Flathead V8 that were used with the 1937 Ford. Ford discontinued production of the H-series engine with the 1951 model year.

254

A version of the L-6 was used from 1948 to 1953 in F6-series Ford trucks, and small Ford school buses. The M-series engine produced and. of torque. They were also used in miscellaneous industrial applications. e.g., to power water pumps for irrigation purposes and within wine-producing farms to manage risk by powering giant frost-control propellers on stands in the middle of rows of grapes.

Second generation

The second generation was a newly designed six-cylinder, produced from 1952 through 1964 and shared many parts with Ford Y-blocks such as the entire valve train and the problems associated with the Y-block's lubrication system. These engines have the exhaust and intake on the driver's side and the distributor on the passenger side. It is referred to as Mileage Maker or I-Block Mileage Maker in the passenger cars and Cost Clipper in the trucks.

215

A completely new OHV I-6 was offered for the 1952-53 F-series truck. It displaced and produced. It was also used in the 1952-53 Ford full-sized cars.

223

The 215 grew to I-6 for the 1954 F-series. Output was now in the trucks and in the 1955 Ford cars. Power was up to in the 1956 trucks. Although not the popular motor option, the 223 cu in was the only I-6 cylinder motor offered in the Fairlane, Galaxie, and F-series trucks between 1955-1964, Causing it to be not quite a rarity, but not easy to come across. The 223 cu in I-6 was also used in 1963-1964 Ford trucks which also used the Autolite 1100 carburetor with stamping C4TF-E and produced with 206 ft-lbs of torque, and Mercury Meteor-Monterey in 1961.
The 223 was also used in Onan 30EC generator sets and possibly others.

262

A I-6 version was also produced. The 262 I-6 was built from 1961 to 1964 for use in heavy duty Ford trucks. This engine was also used for industrial applications.

Third generation

The third generation was produced at the Lima Engine plant in Lima, Ohio, from 1960 through 1984. Officially dubbed the Thriftpower Six, this engine line is sometimes referred to as the Falcon Six. Note: Car companies including Ford, switched from gross ratings to net horsepower and torque ratings in 1972. Changes in engine compression and emissions controls make it difficult to compare engines from various production years.

144

The inline-six engine was first introduced in the 1960 Ford Falcon. The 144 was made from 1960 through 1964 and averaged during the production run. While not known for being powerful or a stout engine, it proved to be economical and could get fairly good gas mileage for the time. This small six was the basis for all the Ford "Falcon" straight-six engines. The intake manifold on this series was cast integrally with the cylinder head ; as a result, they could not be easily modified for greater power. This engine had four main bearings and can be identified by the three core plugs on the side of the block.
This engine was used in:
In 1961, the became an option for the Falcon line. The 170 Special Six was a stroked version of the 144, changing the stroke from 2.5" to 2.94". The original 1965 model Ford Mustang used a version between March and July 1964. The Econoline van and Ford Bronco received a heavier-duty version with mechanical valve lifters. This engine had four main bearings and can be identified by the three freeze plugs on the side of the block. The 170 Special was dropped from production in 1972.

187

From 1965 to 1969, Ford Argentina produced a specific block similar to the earlier 200 c.i. but with a 3.56" bore. It was replaced by the 188 c.i. from 1969. Power was rated at 116 hp.

200

The 200 cu in I-6 engine model was introduced in the middle of 1963 with bore and stroke, and shared the four main bearing design of the 170. Early 200s can be identified by three freeze plugs. Beginning in 1965, the 200s were upgraded to seven main bearings to reduce harmonic vibrations and increase durability. 1965 and later engines can be identified by five freeze plugs and the casting code C5DE-H. The 1965 Mustang used this engine as standard, rated at. The Mustang continued to use the 200 as its base engine until it was dropped in 1971. Starting in 1966, a six-bolt bellhousing flange block was introduced. Beginning in 1980, the block was redesigned with a bell housing flange and a low-mount starter very similar to the small-block Ford V8. This version is easily identified by starter location down by the oil pan rail and is referred to as the Big Bell 200. The big bell design is uncommon but sought after by I-6 performance enthusiasts because it can be modified to accept a Ford small block V8 six bolt bell housing.
When Ford launched the third-generation Fox body Mustang in 1979, the original engine lineup included the Cologne V6. The same engine was also offered in the hugely successful Ford of Europe Capri Mk II. The 2.8 L V6 engine was a popular option for the US Mustang and the European Capri MkII and as a result the Cologne engine plant could not meet the demand for engines for both continents. So, the Cologne 2.8 L V6 was dropped from the Mustang's engine lineup in the middle of the 1979 production year and replaced with the 200cid Falcon inline six, which was now referred to as the 3.3L engine. The engine and front suspension K-member was transferred from the Fairmont, which helped reduce costs instead of having to redesign the Mustang for a different engine.
The 200 was used in the Ford Maverick and Mercury Comet and continued in the Fairmont until these were replaced at the end of the 1983 model year. The Ford Granada and Mercury Monarch offered the 250ci L6 and then the 200ci L6 as part of their engine lineup, when they were replaced in 1983 by the Ford LTD and the Mercury Marquis. These two models used the engine from 1983 to 1984 when it was replaced by the 3.8 L Essex V6.
Ford was also having problems meeting demand for its 2.3 L OHC engine which was used in a multitude of models worldwide. In anticipation of another engine shortage, Ford's Lima, Ohio, engine plant, which was already producing the 2.3 L OHC engine, decided they could modify the Falcon inline six block casting molds to remove cylinders 4 and 5 to create a four-cylinder engine. A cast iron high-swirl cylinder head was developed, and the motor was designated the 2.3 L HSC to help differentiate it from the same displacement 2.3 L OHC design. This motor shared many common parts with the 200, and it is common for persons rebuilding their 200 engines to use the 2.3 L HSC pistons as a cheap replacement.
Applications:
The 250 cu. in. I-6 engine option was offered in 1969 in the Mustang, and 1970 in compact Ford cars. The 250 was a stroked 200, made by changing the stroke from 3.126" to 3.91". Output was 155 hp in the Mustang, and became the base engine in 1971. The Ford Granada and Mercury Monarch offered the 250ci L6 and then the 200ci L6 as part of their engine lineup, when they were replaced in 1983 by the Ford LTD and the Mercury Marquis.
Power was re-evaluated at for 1972 and the next year. This engine had seven main bearings, and can be identified by the five freeze plugs on the side of the block. The block uses a low-mount starter and six bellhousing bolts, sharing its bellhousing with the Windsor V-8s 302-351W, late 289,early 4.6, and the 240-300 CID Ford Six. The last year of production for the 250 was 1980.
Applications:
Starting in 1960, Ford of Australia used the same I-6 engines as North America, featuring the 144 and 170 c.i. pursuit models. The 144 was discontinued in late 1966. Also as in North America, a 200 c.i. 'Super Pursuit' motor was added in February 1964. In 1968, Ford of Australia increased the deck height of the design to make room for increased crankshaft stroke, resulting in displacements of 188 and 221 c.i.. They superseded the 170 and 200 motors in the lineup. The 188 and 221 c.i. also equipped Ford Falcon Argentine's variant from 1970 to 1991.
In, Ford of Australia enlarged the motors to 200 and 250 c.i. The head was of the same design as previous models, with an integral intake catering for a single-barrel Bendix-Stromberg carburettor. In the configuration, the Falcon 250 c.i. I-6 was rated at. Around this time, Ford of Australia also developed the '2V' cylinder head, which in all respects was similar to the previous integral "log head" intake, with the exception of a removable aluminum intake which mounted a Bendix-Stromberg WW two-barrel carburetor. To take advantage of the much improved breathing ability that the removable intake brought to the new head, the 250-2V also featured a much better breathing exhaust manifold. The result was the engine being rated at.
For years, the 250-2V cylinder head was very popular for racing and many have been imported to North America, where owners of cars with the Falcon inline six have upgraded their engines with the better cylinder head.
In, Ford of Australia updated the engines with a new cast-iron crossflow head design. Engine displacements remained 200 and 250 c.i., but were now badged 3.3 and 4.1 litres, respectively. These engines were offered in the Ford Falcon XC in Australia. Whereas the previous integral "log head" I-6 motor borrowed from the Ford FE engine family design, the new crossflow motor borrowed from the Ford 351 Cleveland engine family. A common upgrade for a crossflow head engine is to use 351 Cleveland roller tip rocker arms.
Ford of Australia updated the crossflow design in mid-1980 with a new aluminum head casting. The alloy head was used to improve warmup time and reduce fuel consumption and emissions. Until 1982, the engines were fitted with a single-barrel Bendix-Stromberg carburetor, but from March 1982 were fitted with a Weber two-barrel carburetor, which had improved fuel consumption over the single-barrel carb. The Weber carburettored engines were badged Alloy-Head II
Later, a fuel-injected version with direct-port fuel injection was offered in the XE Falcon, and was only available as an aluminium 4.1 L. The XF Falcon's 4.1 then received Ford's EEC-IV engine management system with Multi Point Electronic Fuel Injection. The carburetor engine was still fitted standard, and EFI was optional. Changes to the carburetor-based engine were made to accommodate the EFI system. The compression ratio on the 4.1 L was 8.89:1. The cylinder head intake ports had been modified to provide clearance for the injectors, and a new intake manifold was designed and many other changes were made in the engine bay to accommodate the new fuel system.
In, the inline six engines underwent a major redesign for the EA Falcon and now featured a new single overhead cam crossflow aluminum head. The camshaft and auxiliary shaft are driven by a 'duplex' chain. The duplex chain drives the distributor and the oil pump shafts. The camshaft is supported on the cylinder head by using 'topless' bearings. Bearing liners are not used. The camshaft is held in position using valve spring pressure. Hydraulic lash adjusters mounted on the rocker arms are used to provide zero valve lash. As with all previous and current models, the block is cast iron, but with a reduction in the cylinder bore to try to reduce emissions.
The SOHC engines were offered as the 3.2 L and the 3.9 L. In 1989, the 3.2 L TBI version was discontinued, and in 1991, the 3.9 L's displacement was enlarged to 4.0 L and was rated at. In 1995, the dual resonance intake manifold for the EF series was introduced. Also for the EF series Falcon, the standard engine employed a high-energy coil-pack ignition system. However, the EL Falcon used a distributor/coil ignition setup, as in Falcon models prior to EF.
Ford of Australia redesigned the I-6 again in 1998, and increased the main bearing size and added a ladder style main stud girdle integral with the oil pan to increase low end rigidity. The engine also received variable cam timing technology in some of the XR models, which can advance or retard cam timing depending on engine speed, which gives a much broader power band.
The 2002 Falcon Forte engine had a power rating of 157 kW, the XR model variants had either 164 kW or 172 kW and the Fairmont had 168 kW. All were I-6 engines at 4.0 litres.
In, the engine received dual overhead cams with variable cam timing as the Barra inline six motors and, depending on the version of engine, were offered in the 2002 BA Falcon, Fairlane, and the SX Territory all had the Barra 182.Currently, the BA 195 powers the Falcon and Falcon "Utes" along with the SZ Territory. The BA195 is rated at @ 6000 rpm and @ 3250 rpm or 198 kW and 409 Nm on 95 octane premium fuels with higher values achieved on 98 octane exceeding 420 Nm of torque versus 391 Nm while on regular 91 octane, whilst the BA 190 is rated at @ 5250 rpm and @ 2500 rpm. As there was the Barra 182 which produces ) All DOHC engines feature the coil on plug direct ignition system.
Some noteworthy performance versions of the DOHC Barra inline sixes have been made.
The, which was a turbocharged, fuel-injected, intercooled DOHC inline six producing and of torque, was offered between 2002 and 2005 in the BA Falcon XR6 and XR6 Turbo, as well as the Territory Turbo. This was followed in the BF and BF Mk II by the Barra 245T producing of power and of torque, which in turn was followed in the FG by the Barra 270T producing of power and of torque.
Ford Australia's high-performance division FPV created even more powerful turbocharged model variants which were upgraded largely co-inciding with the upgrades of the regular Falcon. The first turbocharged straight-6-engined car from FPV was the BA Mk II F6 which produced of power and of torque. The BF and BF Mk II F6's had the same power and torque figures. The first power and torque upgrade came with the current FG model which has of power @ 5500 rpm and of torque. The Barra 310T is the first Australian-built motor to achieve over 100 hp per litre, and until the release of the new Ford supercharged "Miami" V8, produced more torque than any Australian-built engine to date.
, based in Victoria, Australia, with their roots in Nissan engines, turned their attention to the Barra engine and were the first to extract reliably from a Barra 240T engine in 2004, with carefully designed cams, manifolds, and turbocharger. With Motec engine management, the engine rev limit was increased to 7200 rpm and it produced of torque at only 3500 rpm. A custom crankshaft, connecting rods, and pistons were used, but the cylinder head was left unmodified apart from the camshafts and valve springs. The engine was available for order to be built by the public, but at a price tag over A$38,000
Ford of Australia had intended to discontinue production of the I-6 engines at their Geelong engine plant in 2010, and replace them with imported Duratec V6s from North America. Due to the drastic increase of oil prices in 2008 and the following economic turmoil, the decision was reversed. Instead, Ford of Australia announced on 20 November 2008 that AU$21 million would be invested in the Geelong engine plant to bring the I-6 engines up to date with the current Euro IV emissions standards.
Falcon modelCapacityInductionValvetrainFuelPowerTorqueNotes
XY, XA, XB3.3 LCarburettorOHVLeaded
XY, XA, XB4.1 LCarburettorOHVLeaded
XC, XD3.3 LCarburettorOHVLeadedCrossflow cylinder head
XC4.1 LCarburettorOHVLeadedCrossflow cylinder head
XD4.1 LCarburettorOHVLeadedAlloy cylinder head - July 1980 onwards
XE, XF pre-1/19863.3 LCarburettorOHVLeadedAlloy head II
XE, XF pre-1/19864.1 LCarburettorOHVLeadedAlloy head II
XE4.1 LEFIOHVLeadedBosch LE II Jetronic fuel injection
XF 1/1986 onwards4.1 LCarburettorOHVUnleaded
XF pre-1/19864.1 LEFIOHVLeadedFord EEC-IV Multi-point EFI
XF 1/1986 onwards4.1 LEFIOHVUnleadedFord EEC-IV Multi-point EFI
EA3.2 LEFISOHCUnleaded
EA, EB3.9 LEFISOHCUnleaded
EA, EB3.9 LEFISOHCUnleadedEEC-IV Multi-point injection
EB series II, ED4.0 LEFISOHCUnleaded
XR6 EBII, ED4.0 LEFISOHCUnleadedTickford enhanced
EF, EL, AU series I, II & III4.0 LEFISOHCUnleadedTwo-stage broadband intake manifold, coil-pack ignition system
XR6 EF, EL, AU series I, II & III4.0 LEFISOHCUnleadedTickford enhanced, also standard fitment on EF and EL Fairmont Ghia
AU series II and III4.0 LEFISOHCLPGDedicated LPG
Fairmont Ghia AU series I, II & III4.0 LEFISOHCUnleadedVCT Variable valve timing
XR6 AU series I, II & III4.0 LEFISOHCUnleadedVCT Variable valve timing, performance exhaust
BA4.0 LEFIDOHCUnleaded
BA XR6 Turbo4.0 LEFIDOHCUnleadedGarrett GT3582 turbocharger
BF4.0 LEFIDOHCUnleaded
BF XR6 Turbo4.0 LEFIDOHCUnleadedGarrett GT3582 turbocharger
FG4.0 LEFIDOHCUnleaded
FG ECO-LPI4.0 LEFIDOHCLPGDedicated LPG
FG XR6 Turbo4.0 LEFIDOHCUnleadedGarrett GT3576 turbocharger

FPV F6 modelCapacityInductionValvetrainFuelPowerTorqueNotes
BA MkII, BF4.0 LEFIDOHCUnleaded
FG4.0 LEFIDOHCUnleaded

Fourth generation

Produced at the Cleveland Engine plant in Brook Park, Ohio from 1964 through 1996, the 240 and 300 Sixes are well known for their durability. Simple design and rugged construction continue to endear these engines to a number of Ford enthusiasts to this day. The engine has earned the monikers "bulletproof" and "indestructible" by many. Popular legend holds that are numerous claims by owners who have purposely sought to destroy a Ford straight-six through intentionally abusive use, but who were unsuccessful in doing so.
One example of the engine's sturdy design is the fact that no timing chain or timing belt is used. This generation of Ford Six was designed with long-wearing gears for that purpose instead. Also these engines employed 7 main bearings.
Both the 240 and the 300, no matter the application, used a single barrel Autolite 1100/1101 carburetor until the introduction of electronic fuel injection in 1987. With proper gearing, many F-trucks and Broncos achieve 20+mpg. This fact was heavily used by Ford's advertising campaign, since the V8 engines in these trucks rarely achieved over 14 mpg.
The fuel economy of the 300 makes the engine a popular choice among truck enthusiasts that want both power and economy. The addition of performance parts place the engine power output near the same levels as the stock 'HO' version of the optional 351 V8, with little or no change in economy.

240

The six for 1965–1972 full sized cars and 65–74 trucks or vans produced . In stationary service fueled by LPG or natural gas, this is known as the CSG-639. The 240 had a bore of 4" and a stroke of 3.18".

300

The six was added for the F-series in 1965. It is essentially a with a longer stroke. The two engines are nearly identical; the differences are in the rotating assembly and combustion chamber sizes in the head. It produced . The 300 became the base F-series engine in 1978 at . Power outputs were increased to roughly during the early 1980s, before fuel injection was introduced. This became the primary engine of the line, eclipsing the 240. Unlike the Falcon engine, it featured separate intake and exhaust manifolds, which could be easily replaced with aftermarket manifolds offering the promise of even more power, through the installation of larger carburetors and a higher flowing exhaust system.
Also during the late sixties and early seventies, the 300 was used in larger vehicles such as dump trucks, many weighing into the 15,000–20,000 pound range. These 300s were equipped with a higher flow HD exhaust manifold and forged crankshafts and rods since the engines were going to be constantly working in the 3000–4000 rpm range. These rare, yet effective manifolds had a much higher exhaust flow rate due to the fact that many of these engines would spend hours at 3000 RPMs or more. Due to their straightforward and high flowing design, enthusiasts often seek these manifolds out due to the ease in which they allow turbochargers to be retrofitted to the engine.
Engine sizes were converted to metric for 1983, causing the 300 to become the "4.9". Fuel injection and other changes in 1987 pushed output up to 150 horsepower with 8.8:1 compression. Even though this engine was renowned for its durability, low end torque, and ease of service, it was gradually phased out, ending production in 1996. It was replaced by the Essex V6 in the F-series trucks with their 1997 redesign. The 300 4.9 came with the Ford C6, E4OD, AOD, ZF S5-42 and S5-47 transmissions, as well as the Mazda built M5OD 5-speed manual transmission, and the Borg-Warner T18, Tremec RTS, and New Process NP435 4-speed manual transmissions. The 4.9-liter 6-cylinder was built in the Cleveland, Ohio engine plant.
Race car driver Scott Donohue raced a rally truck with a Ford 4.9 in it and won the Baja 1000 3 times. This engine is also used by Stewart and Stevenson in the , and Harlan in their standard tow tractors , as well as a multitude of other pieces of equipment, such as ski lifts, power generators, wood chippers, tractors, and, until they converted to diesel engines, most UPS trucks. Many UPS trucks still use the 300 to this day. In stationary service fueled with LPG or natural gas, this engine is known as the CSG-649.
Applications: