Fritz Zwicky


Fritz Zwicky was a Swiss astronomer. He worked most of his life at the California Institute of Technology in the United States of America, where he made many important contributions in theoretical and observational astronomy. In 1933, Zwicky was the first to use the virial theorem to infer the existence of unseen dark matter, describing it as "dunkle Materie".

Biography

Fritz Zwicky was born in Varna, Bulgaria, to a Swiss father. His father, Fridolin, was a prominent industrialist in the Bulgarian city and also served as ambassador of Norway in Varna. The Zwicky House in Varna was designed and built by Fridolin Zwicky. Fritz's mother, Franziska Vrček, was an ethnic Czech of the Austro-Hungarian Empire. Fritz was the oldest of the Zwicky family's three children: he had a younger brother named Rudolf and a sister, Leonie. Fritz's mother died in Varna in 1927, and his father Fridolin remained in Bulgaria until 1945, when he returned to Switzerland. His sister Leonie married a Bulgarian from Varna and spent her entire life in the city.
In 1904, at the age of six, Fritz was sent to his grandparents in the family's ancestral canton of Glarus, Switzerland, to study commerce. His interests shifted to math and physics and he received an advanced education in mathematics and experimental physics at the Swiss Federal Polytechnic in Zurich. In 1925, he immigrated to the United States to work with Robert Millikan at California Institute of Technology with an office down the hall from Robert Oppenheimer after receiving the "international fellowship from the Rockefeller Foundation."
He was responsible for positing numerous cosmological theories that have a profound impact on the understanding of our universe today. He coined the term "supernova" during his fostering the concept of neutron stars. It would be five years later when Oppenheimer would publish his landmark paper announcing "neutron stars". Fritz was appointed Professor of Astronomy at Caltech in 1942 and also worked as a research director/consultant for Aerojet Engineering Corporation and staff member of Mount Wilson Observatory and Palomar Observatory for most of his career. He developed some of the earliest jet engines and holds over 50 patents, many in jet propulsion, and is the inventor of the Underwater Jet, the Two Piece Jet Thrust Motor and Inverted Hydro Pulse.
In April 1932, Fritz Zwicky married Dorothy Vernon Gates, a member of a prominent local family and a daughter of California State Senator Egbert Gates. Her money was instrumental in the funding of the Palomar Observatory during the Great Depression. Nicholas Roosevelt, cousin of President Theodore Roosevelt, was his brother-in-law by marriage to Tirzah Gates. Zwicky and Dorothy divorced amicably in 1941. In 1947 Zwicky was married in Switzerland to Anna Margaritha Zurcher and they had three daughters, Margrit, Franziska, and Barbarina. The Zwicky Museum at the Landesbibliothek, Glarus, houses many of his papers and scientific works, and the in Switzerland carries on his ideas relating to "Morphological analysis". Zwicky died in Pasadena on February 8, 1974, and was buried in Mollis, Switzerland.
Zwicky was an atheist.
He is remembered as both a genius and a. One of his favorite insults was to refer to people he did not approve of as "spherical bastards", because, he explained, they were bastards no matter which way one looked at them.
A recent biography in English was published by the Fritz Zwicky Foundation: Alfred Stöckli & Roland Müller: Fritz Zwicky – An Extraordinary Astrophysicist. Cambridge Scientific Publishers, Cambridge, 2011. A review of the book is available from .

Scientific work

Fritz Zwicky was a prolific scientist and made important contributions in many areas of astronomy.

Ionic crystals and electrolytes

His first scientific contributions pertained to ionic crystals and electrolytes.

Supernovae and neutron stars

Together with colleague Walter Baade, Zwicky pioneered and promoted the use of the first Schmidt telescopes used in a mountain-top observatory in 1935. In 1934 he and Baade coined the term "supernova" and hypothesized that supernovae were the transition of normal stars into neutron stars, as well as the origin of cosmic rays. This was an opinion which contributed to determining the size and age of the universe subsequently.
In support of this hypothesis, Zwicky started looking for supernovae, and found a total of 120 by himself over 52 years, a record which stood until 2009 when passed by Tom Boles. Zwicky did his laborious work, comparing photographic plates with the human eye, which is far more challenging and difficult than Boles accomplished using modern technology for his record.

Gravitational lenses

In 1937, Zwicky posited that galaxies could act as gravitational lenses by the previously discovered Einstein effect. It was not until 1979 that this effect was confirmed by observation of the so-called "Twin Quasar" Q0957+561.

Dark matter

While examining the Coma galaxy cluster in 1933, Zwicky was the first to use the virial theorem to discover the existence of a gravitational anomaly, which he termed dunkle Materie 'dark matter'. The gravitational anomaly surfaced due to the excessive rotational velocity of luminous matter compared to the calculated gravitational attraction within the cluster. He calculated the gravitational mass of the galaxies within the cluster from the observed rotational velocities and obtained a value at least 400 times greater than expected from their luminosity. The same calculation today shows a smaller factor, based on greater values for the mass of luminous material; but it is still clear that the great majority of matter was correctly inferred to be dark.

Tired light

When Edwin Hubble discovered a somewhat linear relationship between the distance to a galaxy and its redshift expressed as a velocity, Zwicky immediately pointed out that the correlation between the calculated distances of galaxies and their redshifts had a discrepancy too large to fit in the distance's error margins. He proposed that the reddening effect was not due to motions of the galaxy, but to an unknown phenomenon that caused photons to lose energy as they traveled through space. He considered the most likely candidate process to be a drag effect in which photons transfer momentum to surrounding masses through gravitational interactions; and proposed that an attempt be made to put this effect on a sound theoretical footing with general relativity. He also considered and rejected explanations involving interactions with free electrons, or the expansion of space.
Zwicky was skeptical of the expansion of space in 1929, because the rates measured at that time seemed too large. It was not until 1956 that Walter Baade corrected the distance scale based on Cepheid variable stars, and ushered in the first accurate measures of the expansion rate. Cosmological redshift is now conventionally understood to be a consequence of the expansion of space; a feature of Big Bang cosmology.

Morphological analysis

Zwicky developed a generalised form of morphological analysis, which is a method for systematically structuring and investigating the total set of relationships contained in multi-dimensional, usually non-quantifiable, problem complexes. He wrote a book on the subject in 1969, and claimed that he made many of his discoveries using this method.

''Catalog of Galaxies and Clusters''

Zwicky devoted considerable time to the search for galaxies and the production of catalogs. From 1961 to 1968 he and his colleagues published a comprehensive six volume Catalogue of galaxies and of clusters of galaxies. They were all published in Pasadena, by the California Institute of Technology.
Galaxies in the original catalog are called Zwicky galaxies, and the catalog is still maintained and updated today. Zwicky with his wife Margaritha also produced an important catalog of compact galaxies, sometimes called simply The Red Book.

Original thinker

Zwicky was an original thinker, and his contemporaries frequently had no way of knowing which of his ideas would work out and which would not. In a retrospective look at Zwicky's life and work, Stephen Maurer said:

He is celebrated for the discovery of neutron stars. He also went on to consider nuclear goblins, which he proposed as "a body of nuclear density... only stable under sufficient external pressure within a massive and dense star". He considered that goblins could move within a star, and explode violently as they reach less dense regions towards the star's surface, and serve to explain eruptive phenomena, such as flare stars. This idea has never caught on.
An anecdote often told of Zwicky concerns an informal experiment to see if he could reduce problems with turbulence hindering an observation session one night at Mount Wilson observatory. He told his assistant to fire a gun out through the telescope slit, in the hope it would help to smooth out the turbulence. No effect was noticed, but the event shows the kind of lateral thinking for which Zwicky was famous.
In a talk to a Caltech PhD student Frank Malina, who experienced some difficulties working on a dissertation regarding characteristics of oxygen-gasoline rocket engine, Fritz Zwicky claimed the engineer "must realize that a rocket could not operate in space as it required the atmosphere to push against to provide thrust". Zwicky later admitted that he had been mistaken.
He was also very proud of his work in producing the first artificial meteors. He placed explosive charges in the nose cone of a V2 rocket, to be detonated at high altitude and fire high velocity pellets of metal through the atmosphere. The first attempts appeared to be failures, and Zwicky sought to try again with the Aerobee rocket. His requests were denied, until the Soviet Union launched Sputnik 1. Twelve days later, on October 16, 1957, Zwicky launched his experiment on the Aerobee, and successfully fired pellets visible from the Mount Palomar observatory. It is thought that one of these pellets may have escaped the gravitational pull of the Earth and become the first object launched into a solar orbit.
Zwicky also considered the possibility of rearranging the universe to our own liking. In a lecture in 1948 he spoke of changing planets, or relocating them within the solar system. In the 1960s he even considered how the whole solar system might be moved like a giant spaceship to travel to other stars. He considered this might be achieved by firing pellets into the Sun to produce asymmetrical fusion explosions, and by this means he thought that the star Alpha Centauri might be reached within 2500 years.

Humanitarian

Zwicky was a generous humanitarian with a great concern for wider society. These two sides of his nature came together in the aftermath of the Second World War, when Zwicky worked hard to collect tons of books on astronomy and other topics, and shipped them to war-ravaged scientific libraries in Europe and Asia.
He also had a longstanding involvement with the charitable Pestalozzi Foundation of America, supporting orphanages. Zwicky received their gold medal in 1955, in recognition of his services.
Zwicky loved the mountains, and was an accomplished alpine climber.
He was critical of political posturing by all sides in the Middle East, and of the use of nuclear weapons in World War II. He considered that hope for the world lay with free people of good will who work together as needed, without institutions or permanent organizations.

Honors

Zwicky produced hundreds of publications over a long career, covering a great breadth of topics. This brief selection, with comments, gives a taste of his work.