Full reptend prime


In number theory, a full reptend prime, full repetend prime, proper prime or long prime in base b is an odd prime number p such that the Fermat quotient
gives a cyclic number. Therefore, the digital expansion of in base b repeats the digits of the corresponding cyclic number infinitely, as does that of with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ordp b = p − 1, which is equivalent to b being a primitive root modulo p.
The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers. Confusingly, Sloane's OEIS refers to these primes as "cyclic numbers."

Base 10

may be assumed if no base is specified, in which case the expansion of the number is called a repeating decimal. In base 10, if a full reptend prime ends in the digit 1, then each digit 0, 1,..., 9 appears in the repetend the same number of times as each other digit. over the course of p − 1 digits.
The known pattern to this sequence comes from algebraic number theory, specifically, this sequence is the set of primes p such that 10 is a primitive root modulo p. Artin's conjecture on primitive roots is that this sequence contains 37.395..% of the primes.

Patterns of occurrence of full reptend primes

Advanced modular arithmetic can show that any prime of the following forms:
  1. 40k + 1
  2. 40k + 3
  3. 40k + 9
  4. 40k + 13
  5. 40k + 27
  6. 40k + 31
  7. 40k + 37
  8. 40k + 39
can never be a full reptend prime in base 10. The first primes of these forms, with their periods, are:
40k + 140k + 340k + 940k + 1340k + 2740k + 3140k + 3740k + 39
41
period 5
3
period 1
89
period 44
13
period 6
67
period 33
31
period 15
37
period 3
79
period 13
241
period 30
43
period 21
409
period 204
53
period 13
107
period 53
71
period 35
157
period 78
199
period 99
281
period 28
83
period 41
449
period 32
173
period 43
227
period 113
151
period 75
197
period 98
239
period 7
401
period 200
163
period 81
569
period 284
293
period 146
307
period 153
191
period 95
277
period 69
359
period 179
521
period 52
283
period 141
769
period 192
373
period 186
347
period 173
271
period 5
317
period 79
439
period 219
601
period 300
443
period 221
809
period 202
613
period 51
467
period 233
311
period 155
397
period 99
479
period 239

However, studies show that two-thirds of primes of the form 40k + n, where n ∈ are full reptend primes. For some sequences, the preponderance of full reptend primes is much greater. For instance, 285 of the 295 primes of form 120k + 23 below 100000 are full reptend primes, with 20903 being the first that is not full reptend.

Binary full reptend primes

In base 2, the full reptend primes are:
For these primes, 2 is a primitive root modulo p, so 2n modulo p can be any natural number between 1 and p − 1.
These sequences of period p − 1 have an autocorrelation function that has a negative peak of −1 for shift of. The randomness of these sequences has been examined by diehard tests.
All of them are of form 8k + 3 or 8k + 5, because if p = 8k + 1 or 8k + 7, then 2 is a quadratic residue modulo p, so p divides, and the period of in base 2 must divide and cannot be p − 1, so they are not full reptend primes in base 2.
Further, all safe primes congruent to 3 are full reptend primes in base 2. For example, 3, 11, 59, 83, 107, 179, 227, 347, 467, 563, 587, 1019, 1187, 1283, 1307, 1523, 1619, 1907, etc.
Binary full reptend prime sequences have found cryptographic and error-correction coding applications. In these applications, repeating decimals to base 2 are generally used which gives rise to binary sequences. The maximum length binary sequence for is given by:
The following is a list about the periods to the primes congruent to 1 or 7 :
8k + 11741738997113137193233241257281313337353401409433449457521569
period820911482868962924167015621882002047222476260284
8k + 15775936016176416737617698098578819299379539771009103310491097112911531193
period1441482515464483803844044285546411768488504258262274564288298
8k + 772331477179103127151167191199223239263271311359367383431439
period311523353951715839599371191311351551791831914373
8k + 74634794875035996076316477197277437518238398638879119199679839911031
period2312392432512993034532335912137137541141943144391153483491495515

None of them are binary full reptend primes.
The binary period of nth prime are
The binary period level of nth prime are
However, studies show that three-fourths of primes of the form 8k+n, where n ∈ are full reptend primes in base 2. For some sequences, the preponderance of full reptend primes is much greater. For instance, 1078 of the 1206 primes of form 24k+5 below 100000 are full reptend primes in base 2, with 1013 being the first that is not full reptend in base 2.

''n''-th level reptend prime

An n-th level reptend prime is a prime p having n different cycles in expansions of . In base 10, smallest n-th level reptend prime are
In base 2, smallest n-th level reptend prime are
nn-th level reptend primes OEIS sequence
17, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593,...
23, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599,...
3103, 127, 139, 331, 349, 421, 457, 463, 607, 661, 673, 691, 739, 829, 967, 1657, 1669, 1699, 1753, 1993, 2011, 2131, 2287, 2647, 2659, 2749, 2953, 3217, 3229, 3583, 3691, 3697, 3739, 3793, 3823, 3931,...
453, 173, 277, 317, 397, 769, 773, 797, 809, 853, 1009, 1013, 1093, 1493, 1613, 1637, 1693, 1721, 2129, 2213, 2333, 2477, 2521, 2557, 2729, 2797, 2837, 3329, 3373, 3517, 3637, 3733, 3797, 3853, 3877,...
511, 251, 1061, 1451, 1901, 1931, 2381, 3181, 3491, 3851, 4621, 4861, 5261, 6101, 6491, 6581, 6781, 7331, 8101, 9941, 10331, 10771, 11251, 11261, 11411, 12301, 14051, 14221, 14411,...
679, 547, 643, 751, 907, 997, 1201, 1213, 1237, 1249, 1483, 1489, 1627, 1723, 1747, 1831, 1879, 1987, 2053, 2551, 2683, 3049, 3253, 3319, 3613, 3919, 4159, 4507, 4519, 4801, 4813, 4831, 4969,...
7211, 617, 1499, 2087, 2857, 6007, 6469, 7127, 7211, 7589, 9661, 10193, 13259, 13553, 14771, 18047, 18257, 19937, 20903, 21379, 23549, 26153, 27259, 27539, 32299, 33181, 33461, 34847, 35491, 35897,...
841, 241, 1601, 1609, 2441, 2969, 3041, 3449, 3929, 4001, 4409, 5009, 6089, 6521, 6841, 8161, 8329, 8609, 9001, 9041, 9929, 13001, 13241, 14081, 14929, 16001, 16481, 17489, 17881, 18121, 19001,...
973, 1423, 1459, 2377, 2503, 3457, 7741, 9433, 10891, 10909, 16057, 17299, 17623, 20269, 21313, 22699, 24103, 26263, 28621, 28927, 29629, 30817, 32257, 34273, 34327,...
10281, 521, 1031, 1951, 2281, 2311, 2591, 3671, 5471, 5711, 6791, 7481, 8111, 8681, 8761, 9281, 9551, 10601, 11321, 12401, 13151, 13591, 14831, 14951, 15671, 16111, 16361, 18671,...
nn-th level reptend primes OEIS sequence
13, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587,...
27, 17, 23, 41, 47, 71, 79, 97, 103, 137, 167, 191, 193, 199, 239, 263, 271, 311, 313, 359, 367, 383, 401, 409, 449, 463, 479, 487, 503, 521, 569, 599, 607, 647, 719, 743, 751, 761, 769,...
343, 109, 157, 229, 277, 283, 307, 499, 643, 691, 733, 739, 811, 997, 1021, 1051, 1069, 1093, 1459, 1579, 1597, 1627, 1699, 1723, 1789, 1933, 2179, 2203, 2251, 2341, 2347, 2749, 2917,...
4113, 281, 353, 577, 593, 617, 1033, 1049, 1097, 1153, 1193, 1201, 1481, 1601, 1889, 2129, 2273, 2393, 2473, 3049, 3089, 3137, 3217, 3313, 3529, 3673, 3833, 4001, 4217, 4289, 4457, 4801, 4817, 4937,...
5251, 571, 971, 1181, 1811, 2011, 2381, 2411, 3221, 3251, 3301, 3821, 4211, 4861, 4931, 5021, 5381, 5861, 6221, 6571, 6581, 8461, 8501, 9091, 9461, 10061, 10211, 10781, 11251, 11701, 11941, 12541,...
631, 223, 433, 439, 457, 727, 919, 1327, 1399, 1423, 1471, 1831, 1999, 2017, 2287, 2383, 2671, 2767, 2791, 2953, 3271, 3343, 3457, 3463, 3607, 3631, 3823, 3889, 4129, 4423, 4519, 4567, 4663, 4729, 4759,...
71163, 1709, 2003, 3109, 3389, 3739, 5237, 5531, 5867, 7309, 9157, 9829, 10627, 10739, 11117, 11243, 11299, 11411, 11467, 13259, 18803, 20147, 20483, 21323, 21757, 27749, 27763, 29947,...
873, 89, 233, 937, 1217, 1249, 1289, 1433, 1553, 1609, 1721, 1913, 2441, 2969, 3257, 3449, 4049, 4201, 4273, 4297, 4409, 4481, 4993, 5081, 5297, 5689, 6089, 6449, 6481, 6689, 6857, 7121, 7529, 7993,...
9397, 7867, 10243, 10333, 12853, 13789, 14149, 14293, 14563, 15643, 17659, 18379, 18541, 21277, 21997, 23059, 23203, 26731, 27739, 29179, 29683, 31771, 34147, 35461, 35803, 36541, 37747, 39979,...
10151, 241, 431, 641, 911, 3881, 4751, 4871, 5441, 5471, 5641, 5711, 6791, 6871, 8831, 9041, 9431, 10711, 12721, 13751, 14071, 14431, 14591, 15551, 16631, 16871, 17231, 17681, 17791, 18401, 19031, 19471,...

Full reptend primes in various bases

Artin also conjectured:
BaseFull reptend primesOEIS sequence
−307, 41, 61, 83, 89, 107, 109, 127, 139, 173, 193, 197, 211, 227, 239, 281, 293, 311, 317, 331, 347, 349, 359,...
−292, 17, 23, 41, 59, 71, 73, 83, 89, 97, 101, 103, 107, 113, 137, 139, 167, 179, 199, 223, 227, 229, 239, 269,...
−283, 5, 13, 17, 19, 31, 41, 47, 59, 73, 83, 89, 101, 103, 131, 139, 167, 173, 181, 227, 229, 251, 257, 269, 283,...
−272, 5, 11, 17, 23, 29, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233,...
−2611, 23, 29, 41, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 127, 137, 157, 163, 173, 191, 193, 199, 227, 263,...
−252, 3, 7, 11, 19, 23, 43, 47, 59, 79, 83, 103, 107, 131, 139, 151, 167, 179, 223, 227, 239, 263, 283, 307, 311,...
−2413, 17, 19, 37, 41, 43, 47, 71, 89, 109, 113, 137, 139, 157, 163, 167, 181, 191, 211, 229, 233, 257, 263, 277,...
−232, 5, 7, 17, 19, 43, 67, 83, 89, 97, 107, 113, 137, 149, 181, 191, 199, 227, 229, 251, 263, 281, 283, 293, 337,...
−223, 5, 17, 37, 41, 53, 59, 151, 167, 179, 193, 233, 251, 263, 269, 271, 281, 317, 337, 359, 379, 389, 397, 409,...
−212, 29, 47, 53, 59, 67, 83, 97, 113, 127, 131, 137, 149, 151, 157, 167, 181, 197, 227, 233, 251, 281, 311, 313,...
−2011, 13, 17, 31, 37, 53, 59, 73, 79, 113, 131, 137, 139, 157, 173, 179, 191, 199, 211, 233, 239, 257, 271, 277,...
−192, 3, 13, 29, 31, 37, 41, 53, 59, 67, 71, 79, 89, 103, 107, 113, 167, 173, 179, 193, 223, 227, 257, 269, 281,...
−185, 7, 23, 29, 31, 37, 47, 53, 61, 71, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 223, 239,...
−172, 5, 19, 37, 41, 43, 47, 59, 61, 67, 83, 97, 103, 113, 127, 151, 173, 179, 191, 193, 197, 233, 239, 251, 263,...
−163, 7, 11, 19, 23, 47, 59, 67, 71, 79, 83, 103, 107, 131, 139, 163, 167, 179, 191, 199, 211, 227, 239, 263, 271,...
−152, 11, 13, 29, 37, 41, 43, 59, 71, 73, 89, 97, 101, 103, 127, 131, 149, 157, 163, 179, 191, 193, 239, 251, 269,...
−1411, 17, 29, 31, 43, 47, 53, 73, 89, 97, 107, 109, 149, 163, 167, 179, 199, 241, 257, 271, 277, 311, 313, 317,...
−132, 3, 5, 23, 37, 41, 43, 73, 79, 89, 97, 107, 109, 127, 131, 137, 139, 149, 179, 191, 197, 199, 241, 251, 263,...
−125, 17, 23, 41, 47, 53, 59, 71, 83, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 239, 251, 257,...
−112, 7, 13, 17, 29, 41, 73, 79, 83, 101, 107, 109, 127, 131, 139, 149, 151, 167, 173, 197, 227, 233, 239, 263,...
−103, 17, 29, 31, 43, 61, 67, 71, 83, 97, 107, 109, 113, 149, 151, 163, 181, 191, 193, 199, 227, 229, 233, 257,...
−92, 7, 11, 19, 23, 31, 43, 47, 59, 71, 79, 83, 107, 127, 131, 139, 163, 167, 179, 191, 199, 211, 223, 227, 239,...
−85, 23, 29, 47, 53, 71, 101, 149, 167, 173, 191, 197, 239, 263, 269, 293, 311, 317, 359, 383, 389, 461, 479,...
−72, 3, 5, 13, 17, 31, 41, 47, 59, 61, 83, 89, 97, 101, 103, 131, 139, 167, 173, 199, 227, 229, 241, 251, 257,...
−613, 17, 19, 23, 41, 47, 61, 67, 71, 89, 109, 113, 137, 157, 167, 211, 229, 233, 257, 263, 277, 283, 331, 359,...
−52, 11, 17, 19, 37, 53, 59, 73, 79, 97, 113, 131, 137, 139, 151, 157, 173, 179, 193, 197, 233, 239, 257, 277,...
−43, 7, 11, 19, 23, 47, 59, 67, 71, 79, 83, 103, 107, 131, 139, 163, 167, 179, 191, 199, 211, 227, 239, 263, 271,...
−32, 5, 11, 17, 23, 29, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233,...
−25, 7, 13, 23, 29, 37, 47, 53, 61, 71, 79, 101, 103, 149, 167, 173, 181, 191, 197, 199, 239, 263, 269, 271, 293,...
23, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269,...
32, 5, 7, 17, 19, 29, 31, 43, 53, 79, 89, 101, 113, 127, 137, 139, 149, 163, 173, 197, 199, 211, 223, 233, 257,...
4
52, 3, 7, 17, 23, 37, 43, 47, 53, 73, 83, 97, 103, 107, 113, 137, 157, 167, 173, 193, 197, 223, 227, 233, 257,...
611, 13, 17, 41, 59, 61, 79, 83, 89, 103, 107, 109, 113, 127, 131, 137, 151, 157, 179, 199, 223, 227, 229, 233,...
72, 5, 11, 13, 17, 23, 41, 61, 67, 71, 79, 89, 97, 101, 107, 127, 151, 163, 173, 179, 211, 229, 239, 241, 257,...
83, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 269, 293, 317, 347, 389, 419, 443, 461, 467,...
92
107, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313,...
112, 3, 13, 17, 23, 29, 31, 41, 47, 59, 67, 71, 73, 101, 103, 109, 149, 163, 173, 179, 197, 223, 233, 251, 277,...
125, 7, 17, 31, 41, 43, 53, 67, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, 223, 257, 269, 281, 283,...
132, 5, 11, 19, 31, 37, 41, 47, 59, 67, 71, 73, 83, 89, 97, 109, 137, 149, 151, 167, 197, 227, 239, 241, 281, 293,...
143, 17, 19, 23, 29, 53, 59, 73, 83, 89, 97, 109, 127, 131, 149, 151, 227, 239, 241, 251, 257, 263, 277, 283, 307,...
152, 13, 19, 23, 29, 37, 41, 47, 73, 83, 89, 97, 101, 107, 139, 149, 151, 157, 167, 193, 199, 227, 263, 269, 271,...
16
172, 3, 5, 7, 11, 23, 31, 37, 41, 61, 97, 107, 113, 131, 139, 167, 173, 193, 197, 211, 227, 233, 269, 277, 283,...
185, 11, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 139, 149, 157, 163, 173, 179, 181, 197, 227, 251, 269,...
192, 7, 11, 13, 23, 29, 37, 41, 43, 47, 53, 83, 89, 113, 139, 163, 173, 191, 193, 239, 251, 257, 263, 269, 281,...
203, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 103, 107, 113, 137, 157, 163, 167, 173, 223, 227, 233, 257, 263, 277,...
212, 19, 23, 29, 31, 53, 71, 97, 103, 107, 113, 137, 139, 149, 157, 179, 181, 191, 197, 223, 233, 239, 263, 271,...
225, 17, 19, 31, 37, 41, 47, 53, 71, 83, 107, 131, 139, 191, 193, 199, 211, 223, 227, 233, 269, 281, 283, 307,...
232, 3, 5, 17, 47, 59, 89, 97, 113, 127, 131, 137, 149, 167, 179, 181, 223, 229, 281, 293, 307, 311, 337, 347,...
247, 11, 13, 17, 31, 37, 41, 59, 83, 89, 107, 109, 113, 137, 157, 179, 181, 223, 227, 229, 233, 251, 257, 277,...
252
263, 7, 29, 41, 43, 47, 53, 61, 73, 89, 97, 101, 107, 131, 137, 139, 157, 167, 173, 179, 193, 239, 251, 269, 271,...
272, 5, 17, 29, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353, 389, 401, 449, 461, 509,...
285, 11, 13, 17, 23, 41, 43, 67, 71, 73, 79, 89, 101, 107, 173, 179, 181, 191, 229, 257, 263, 269, 293, 313, 331,...
292, 3, 11, 17, 19, 41, 43, 47, 73, 79, 89, 97, 101, 113, 127, 131, 137, 163, 191, 211, 229, 251, 263, 269, 293,...
3011, 23, 41, 43, 47, 59, 61, 79, 89, 109, 131, 151, 167, 173, 179, 193, 197, 199, 251, 263, 281, 293, 307, 317,...

The smallest full-reptend primes in base n are: