GRE Subject Biochemistry, Cell and Molecular Biology was a standardized exam provided by ETS that was discontinued in December 2016. It is a paper-based exam and there are no computer-based versions of it. ETS places this exam three times per year: once in April, once in October and once in November. Some graduate programs in the United States recommend taking this exam, while others require this exam score as a part of the application to their graduate programs. ETS sends a bulletin with a sample practice test to each candidate after registration for the exam. There are 180 questions within the biochemistry subject test. Scores are scaled and then reported as a number between 200 and 990; however, in recent versions of the test, the maximum and minimum reported scores have been 760 and 320 respectively. The mean score for all test takers from July, 2009, to July, 2012, was 526 with a standard deviation of 95. After learning that test content from editions of the GRE® Biochemistry, Cell and Molecular Biology Test has been compromised in Israel, ETS made the decision not to administer this test worldwide in 2016–17.
Content specification
Since many students who apply to graduate programs in biochemistry do so during the first half of their fourth year, the scope of most questions is largely that of the first three years of a standard American undergraduate biochemistry curriculum. A sampling of test item content is given below:
Biochemistry (36%)
A Chemical and Physical Foundations Thermodynamics and kinetics Redox states Water, pH, acid-base reactions and buffers Solutions and equilibria Solute-solvent interactions Chemical interactions and bonding Chemical reaction mechanisms B Structural Biology: Structure, Assembly, Organization and Dynamics Small molecules Macromolecules Supramolecular complexes C Catalysis and Binding Enzyme reaction mechanisms and kinetics Ligand-protein interaction D Major Metabolic Pathways Carbon, nitrogen and sulfur assimilation Anabolism Catabolism Synthesis and degradation of macromolecules E Bioenergetics Energy transformations at the substrate level Electron transport Proton and chemical gradients Energy coupling F Regulation and Integration of Metabolism Covalent modification of enzymes Allosteric regulation Compartmentalization Hormones G Methods Biophysical approaches Isotopes Separation techniques Immunotechniques
Cell biology (28%)
Methods of importance to cellular biology, such as fluorescence probes and imaging, will be covered as appropriate within the context of the content below. A. Cellular Compartments of Prokaryotes and Eukaryotes: Organization, Dynamics and Functions Cellular membrane systems Nucleus Mitochondria and chloroplasts B. Cell Surface and Communication Extracellular matrix Cell adhesion and junctions Signal transduction Receptor function Excitable membrane systems C. Cytoskeleton, Motility and Shape Regulation of assembly and disassembly of filament systems Motor function, regulation and diversity D. Protein, Processing, Targeting and Turnover Translocation across membranes Posttranslational modification Intracellular trafficking Secretion and endocytosis Protein turnover E. Cell Division, Differentiation and Development Cell cycle, mitosis and cytokinesis Meiosis and gametogenesis Fertilization and early embryonic development
A. Genetic Foundations Mendelian and non-Mendelian inheritance Transformation, transduction and conjugation Recombination and complementation Mutational analysis Genetic mapping and linkage analysis B. Chromatin and Chromosomes Karyotypes Translocations, inversions, deletions and duplications Aneuploidy and polyploidy Structure Epigenetics C. Genomics Genome structure Physical mapping Repeated DNA and gene families Gene identification Transposable elements Bioinformatics Proteomics Molecular evolution D. Genome Maintenance DNA replication DNA damage and repair DNA modification DNA recombination and gene conversion E. Gene Expression/Recombinant DNA Technology The genetic code Transcription/transcriptional profiling RNA processing Translation F. Gene Regulation Positive and negative control of the operon Promoter recognition by RNA polymerases Attenuation and antitermination Cis-acting regulatory elements Trans-acting regulatory factors Gene rearrangements and amplifications Small non-coding RNA G. Viruses Genome replication and regulation Virus assembly Virus-host interactions H. Methods Restriction maps and PCR Nucleic acid blotting and hybridization DNA cloning in prokaryotes and eukaryotes Sequencing and analysis Protein-nucleic acid interaction Transgenic organisms Microarrays