Gear pump


A gear pump uses the meshing of gears to pump fluid by displacement. They are one of the most common types of pumps for hydraulic fluid power applications. The gear pump was invented around 1600 by Johannes Kepler.
Gear pumps are also widely used in chemical installations to pump high viscosity fluids. There are two main variations: external gear pumps which use two external spur gears, and internal gear pumps which use an external and an internal spur gears. Gear pumps are positive displacement, meaning they pump a constant amount of fluid for each revolution. Some gear pumps are designed to function as either a motor or a pump.

Theory of operation

As the gears rotate they separate on the intake side of the pump, creating a void and suction which is filled by fluid. The fluid is carried by the gears to the discharge side of the pump, where the meshing of the gears displaces the fluid. The mechanical clearances are small— in the order of 10 μm. The tight clearances, along with the speed of rotation, effectively prevent the fluid from leaking backwards.
The rigid design of the gears and houses allow for very high pressures and the ability to pump highly viscous fluids.
Many variations exist, including helical and herringbone gear sets, lobe shaped rotors similar to Roots blowers, and mechanical designs that allow the stacking of pumps. The most common variations are shown below.
An external precision gear pump is usually limited to a maximum working pressure of and a maximum speed of 3,000 rpm. Some manufacturers produce gear pumps with higher working pressures and speeds but these types of pumps tend to be noisy and special precautions may have to be made.
Suction and pressure ports need to interface where the gears mesh. Some internal gear pumps have an additional, crescent-shaped seal. This crescent functions to keep the gears separated and also reduces eddy currents.
Pump formulas:
Generally used in: