Geography of South America


The geography of South America contains many diverse regions and climates. Geographically, South America is generally considered a continent forming the southern portion of the landmass of the Americas, south and east of the Panama–Colombia border by most authorities, or south and east of the Panama Canal by some. South and North America are sometimes considered a single continent or supercontinent, while constituent regions are infrequently considered subcontinents.
South America became attached to North America only recently with the formation of the Isthmus of Panama some 3 million years ago, which resulted in the Great American Interchange. The Andes, likewise a comparatively young and seismically restless mountain range, runs down the western edge of the continent; the land to the east of the northern Andes is largely tropical rain forest, the vast Amazon River basin. The continent also contains drier regions such as eastern Patagonia and the extremely arid Atacama desert.
The South American continent also includes various islands, most of which belong to countries on the continent. The Caribbean territories are grouped with North America. The South American nations that border the Caribbean Sea — Colombia and Venezuela —are also known as Caribbean South America.

Topography and geology

The geographical structure of South America is deceptively simple for a continent-sized landmass. The continent's topography is often likened to a huge bowl owing to its flat interior almost ringed by high mountains. With the exception of narrow coastal plains on the Pacific and Atlantic Oceans, there are three main topographic features: the Andes, a central lowland, and the extensive Brazilian and Guiana Highlands in the east.
The Andes are a Cenozoic mountain range formed Altiplano and a number of major valleys such as the Rio Magdalena. These contain three of the world's highest capitals: Bogotá, Quito and highest of all, La Paz, Bolivia. The southernmost Andes hosts the South Patagonian Ice Field are lower and narrower. There are a number of large glaciers in the northern part, but from latitude 19°S to 28°S the climate is so arid that no permanent ice can form even on the highest peaks. Permafrost, however, is widespread in this section of the Altiplano and continuous above.
The very fertile soils from the erosion of the Andes formed the basis for the continent's only pre-Columbian state civilizations: those of the Inca Empire and its predecessors. The area is still a major agricultural region. The Altiplano contains many rare minerals such as copper, tin, mercury ore. The Atacama is mined for its nitrates. Peru east of the Andes is regarded as the most important biodiversity hotspot in the world with its unique forests that form the western edge of the world's largest rainforest, the Amazon Rainforest.
East of the Andes is a large lowland drained by a small number of rivers, including the two largest in the world by drainage area—the Amazon River and the more southerly Paraná River. The other major river of this central lowland is the Orinoco River, which has a natural channel linking it with the Amazon. Most of this central lowland is sparsely populated because the soils are heavily leached, but in the south is the very fertile pampas of Argentina—one of the world's major food-producing regions where wheat and beef cattle are pre-eminent. The natural vegetation of the northern lowlands are either savanna in the northern llanos and southern , or tropical rainforest throughout most of the Amazon basin. Efforts to develop agriculture, outside of fertile floodplains of rivers descending from the Andes, have been largely failures because of the soils. Cattle have long been raised in the llanos of northern Colombia and Venezuela, but petroleum is now the dominant industry in the northern lowlands, making Venezuela the richest country in the continent.
in Pernambuco, NE|thumb|right
The eastern highlands are areas of Earth's crust that are much older than the Andes, being pre-Cambrian in origin, but are still rugged in places, especially in the wet tepuis of Venezuela, Guyana and Roraima. The Amazon River has cut a large valley through a former highland, and to the east is a relatively low plateau comprising the Nordeste and Southeast regions of Brazil. In the north of this region is the arid sertão, a poor region consistently affected by extremely erratic rainfall, and the humid zona da mata, once home of the unique Atlantic Rainforest with many species not found in the Amazon, and now a centre for sugarcane. Further south, the main land use is coffee, while São Paulo is the economic heart of the continent with its industry.
South of about Santa Catarina, the highlands fade out to low plains in Uruguay.
East of the Andes in Argentina, there are a number of rugged, generally arid to semi-arid isolated mountain chains called Sierras Pampeanas, the highest of which is the Sierra de Córdoba near the city of the same name. Eastern Patagonia is characterized by containing a series of stepped plateaus of lava.

Territories

The largest country in South America by far, in both area and population, is Brazil. Regions in South America include the Andean States, the Guianas and the Southern Cone.
Name of territory,
with flag
Area
Population
Population density
Capital
Argentina2,766,89040,913,58414.8Buenos Aires
Bolivia1,098,5809,775,2468.9La Paz, Sucre
Brazil8,511,965198,739,26923.3Brasília
Chile756,95016,601,70721.9Santiago
Colombia1,138,91045,644,02340.1Bogotá
Ecuador283,56014,573,10151.4Quito
Falkland Islands 12,1733,1400.26Stanley
French Guiana 83,534221,5002.7Cayenne
Guyana214,970772,2983.6Georgetown
Paraguay406,7506,995,65517.2Asunción
Peru1,285,22029,546,96323.0Lima
South Georgia and
South Sandwich Islands
3,90300Grytviken
Suriname163,270481,2672.9Paramaribo
Uruguay176,2203,494,38219.8Montevideo
Venezuela912,05026,814,84329.4Caracas

Climate

As part of the Hadley model of atmospheric circulation, the equator is characterised by the ascending branches of separate meridional cells, driven by intense insolation. The vertical convection draws in air from the surrounding atmosphere, known as the trade winds. As these inwards flows of air converge they reduce horizontal wind speed, and as they rise, they form precipitation. The vertical convection also results in a net export of heat and freshwater from the lower atmosphere into the troposphere This system is known as the ITCZ. The location of the ITCZ is centred on the areas of highest insolation, although it is more stationary over the oceans than landmasses.
In the Atlantic region, the ITCZ is clearly developed, and the spatial extent of the ITCZ reaches a minimum close to the equator during the boreal spring, while extending to a maximum of 10°–15°N in late boreal summer. No comprehensive theory for ITCZ formation and spatial variation has been validated, although several hypotheses have been proposed. Some studies advance ideas that describe one or more atmospheric cells over the equator, while others state that the position of the ITCZ depends on Ekman pumping efficiency and moisture availability. Whichever hypothesis best represents the natural system, it is clear that the dynamics of the ITCZ are influenced by several other external climate systems. These include continental convection and equatorially asymmetric sea surface temperature distribution. This asymmetry is evident in the northward bias of the ITCZ's location, which is maintained by a positive feedback between wind speed, evaporation and SST.
Whereas the ITCZ has a global extent, South America is subject to its own unique climate patterns. which have been organised into the South American Monsoon System. As an integrated component in the global climate system, the SAMS is influenced the Atlantic sector of the ITCZ, variability in the adjacent Pacific and Atlantic Oceans, the Andean and central-east Brazil topography, complex land surface processes and relations with land use change, and interactions involving topography and soil moisture. The SAMS framework comprises several distinct subcomponents, which are discussed below:
The development of the SAMS during spring is characterised by a rapid southward shift of the convective region from northwestern South America to the highland region of the central Andes and to the southern Amazon basin. The South Atlantic High moves eastward, reflecting the pressure reduction over the continent and the intensity and direction of the zonal flow over the nearby tropics and sub-tropics. This change in flow direction is evident in changes to terrestrial windfields over extreme southwestern Amazonia, with winds changing from northerlies to northwesterlies, and over eastern Brazil, where the winds turn from easterlies to northeasterlies. The southward moisture flux east of the Andes also increases, bringing humidity to central and southeast Brazil.
As the SAMS progresses a continental-scale gyre transports moisture westward from the tropical Atlantic Ocean to the Amazon basin and then southward toward the extratropics of South America. The diabatic heating released in the SAMS region seems to promote that gyre, and the maintenance of the South Atlantic subtropical high during austral summer. It has also been suggested that is the subsidence over the cool SSTs of the eastern Pacific and extensive stratocumulus decks provide a radiative heat sink to the tropical atmosphere that can balance the adiabatic warming due to the monsoonal descent.
The decay phase of the monsoon begins between March and May, as convection shifts gradually northward toward the equator. During April and May, the low-level southward flow of moisture from the western Amazonia weakens, as more frequent incursions of drier and cooler air from the mid-latitudes begin to occur over the interior of subtropical South America.