GeoMelt is a process by which dangerous, contaminated material is mixed with clean soil, a blend of industrial minerals, and/or glass frit and melted to create an extremely hard and leach-resistant glass product. Vitrification immobilizes nearly all of the inorganic contaminants present in the initial mixture by incorporation into the glass matrix. Organic wastes in the melt are destroyed by pyrolysis and gaseous contaminants released during the melting process are treated separately. Developed in 1980 by the U.S. Department of Energy's Pacific Northwest National Laboratory, the GeoMelt process is deployed in one of two ways: in-situ treatment of buried radioactive and hazardous wastes and In-Container Vitrification.
Process
Vitrification
Geomelting is based on the principle of vitrification, the process by which a glass is formed. To effectively vitrify any mixture of materials, substances that contribute to glass formation must be present. These glass formers usually contain silicon and oxygen and are present in most soils. Much of the efficiency of this process has to do with how much waste material can be mixed with glass formers. Industrial-scale melts have shown that a stable glass compound is formed even when the original melt mixture is up to 33-40% waste material by weight, depending on the type of waste.
Melting
First, waste is mixed with soil containing glass formers in a large container installed with electrodes suitable for heating the mixture. The container used is either underground or above ground. In both cases, the waste/soil mixture is loaded into the container and the heating processes begins when the electrodes are turned on. Due to spatial restrictions, the entire mixture cannot melt at the same time. The materials closest to the electrodes are melted first, and convection currents within the molten mixture continue to add more solid material into the molten material. After about 36-58 hours, all of the mixture is molten and the convection currents create homogeneity within the resultant mixture.
Subsurface Planar Vitrification (SPV)
In subsurface planar vitrification, all melting operations are performed at the site of contamination. A very tall, narrow cavern is dug into the contaminated soil, which serves as the melting container. Very large electrodes are positioned within the cavern to optimize melting times. The hazardous waste is then mixed with soil inside the cavern and the melt is initiated. After the glass product has been formed, it is either left in the ground or transferred to a disposal facility.
Advantages
SPV melts do not require much capital investment because the only construction necessary is the cavern that must be dug and the retrieval of the vitrified mass after the melt. SPV melts cost roughly $355–461 per ton of processed waste. When compared to the disposal cost of $555 per kilogram of nuclear waste, SPV is very cost-effective. There is also very little risk of worker injury on the job because the melting process happens underground and away from the workers at the site. Finally, the melt caverns have no size restrictions, so SPV can handle very large volumes of waste at once.
Disadvantages
SPV does not come without its drawbacks. In order to perform an SPV melt, all materials and personnel must be moved to the melting site, so the costs of transportation for both must be taken into consideration. Once all contaminants have been removed or destroyed at the site, the project must relocate to continue operations. Melts cannot begin immediately after a treatment team arrives because it takes a few hours to dig the caverns and position the electrodes inside.
In-Container Vitrification (ICV)
In-container vitrification melts are carried out above ground in a container made of heat-resistant metal coated with a protective layer of sand. The sand separates the container walls from the molten mixture and shapes the glass product after it has cooled. Melts are carried out in quick succession; once one melt has cooled, another waste container is loaded with electrodes and the process begins again. The vitrified glass is then sent to a disposal facility.
Advantages
Because these melts are carried out at a treatment facility, all melts are efficient and centralized to that location. Waste/soil mixtures are systematically loaded and processed in the facility. Since the mixtures are melted above ground, machines do not have to dig up the glass product like in SPV melts. The melt containers are also the containers used to transport the glass, so there are fewer transfers involved in the glass's disposal.
Disadvantages
ICV melts have their downsides as well. The most immediate concern of ICV melts is the cost. ICV requires a treatment facility, meaning a new facility must be built or an existing facility must be renovated to accommodate the new process. Both methods require considerable capital investment. Even after the facility is prepared for the process, ICV melts cost about $1,585 per ton of processed waste. This extra cost is due to the necessary safety precautions in the facility. For example, the melting process occurs at very high temperatures and some of this heat is dispersed throughout the facility, so adequate cooling and ventilation are needed for areas where workers are present.
Off-Gas Treatment
While the contaminated mixture is melting, gases are released, which are hazardous substances themselves. These gases are captured by a steel fume hood and sent through a treatment system that then removes about 99.9999% of the contaminants. Standard treatment procedures span from filtration to wet scrubbing, though the exact procedures depend on the gases being treated.
Applications
Hazardous materials are often very difficult to remove and treat. The contaminants might be seeped into the soil, contained within a sludge, or present within spent nuclear reactor cores. No matter where a hazard exists, each requires a different method of treatment and disposal using standard waste management processes. With geomelting, however, the treatment process is essentially the same for each batch, as is the glass produced, regardless of the contaminants in the mixture. Due to this versatility, geomelting is employed in many hazard-control operations.
Organics
GeoMelt is used to treat a variety of organic wastes including oils, pesticides and herbicides, solvents and persistent organic pollutants including polychlorinated biphenyls, dioxins, and furans as an approved thermal treatment method for PCBs throughout the U.S. These wastes are carcinogens and often impair critical bodily functions over time. The melting process destroys organic compounds because no organic materials are able to survive the high temperatures of the melt process.
Inorganics
Inorganic contaminants like heavy metals are released into the environment via industrial leaks and automobile waste. If left unattended, these inorganic hazards can deteriorate ecosystems and cause mental/physical illnesses in humans. Regardless of the mixture of metals, geomelting isolates these heavy metals in a glass matrix and prevents them from entering the environment, eliminating the threat posed to the surroundings.
Radioactive Materials
Since the advent of nuclear power plants, nuclear pollution has become a problem for the environment. The amount of radiation in radioactive materials may not be safe for living organisms, so it is important for all nuclear pollution to be removed. Nuclear waste naturally remains hazardous for hundreds of years, but when processed with geomelting, radioactive materials are trapped in such a way that prevents radioactive emissions from being released, effectively neutralizing them.