Gliclazide is used for control of hyperglycemia in gliclazide-responsive diabetes mellitus of stable, mild, non-ketosis prone, type 2 diabetes. It is used when diabetes cannot be controlled by proper dietary management and exercise or when insulin therapy is not appropriate. National Kidney Foundation claims that Gliclazide does not require dosage uptitration even in end stage kidney disease.
Hypoglycemia - while it was shown to have the same efficacy as glimepiride, one of the newer sulfonylureas, the European GUIDE study has shown that it has approximately 50% less hypoglycaemic confirmed episodes in comparison with glimepiride.
Gliclazide overdose may cause severe hypoglycemia, requiring urgent administration of glucose by IV and monitoring.
Mechanism of action
Gliclazide selectively binds to sulfonylurea receptors on the surface of the pancreatic beta-cells. It was shown to provide cardiovascular protection as it does not bind to sulfonylurea receptors in the heart. This binding effectively closes these K+ion channels. This decreases the efflux of potassium from the cell which leads to the depolarization of the cell. This causes voltage dependent Ca2+ ion channels to open increasing the Ca2+ influx. The calcium can then bind to and activate calmodulin which in turn leads to exocytosis of insulin vesicles leading to insulin release. The mouse model of MODY diabetes suggested that the reduced gliclazide clearance stands behind their therapeutic success in human MODY patients, but Urbanova et al. found that human MODY patients respond differently and that there was no consistent decrease in gliclazide clearance in randomly selected HNF1A-MODY and HNF4A-MODY patients. Its classification has been ambiguous, as literature uses it as both a first-generation and second-generation sulfonylurea.
Properties
According to the Biopharmaceutical Classification System, gliclazide falls under the BCS Class II drug, which is poorly soluble and highly permeable. Water solubility = 0.027 mg/L
Hypoglycemic sulfonylurea, restoring first peak of insulin secretion, increasing insulin sensitivity.
Gliclazide undergoes extensive metabolism to several inactive metabolites in human beings, mainly methylhydroxygliclazide and carboxygliclazide. CYP2C9 is involved in the formation of hydroxygliclazide in human liver microsomes and in a panel of recombinant human P450s in vitro. But the pharmacokinetics of gliclazide MR are affected mainly by CYP2C19 genetic polymorphism instead of CYP2C9 genetic polymorphism.