Gliding motility


Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known.
Twitching motility also allows microorganisms to travel along a surface, but this type of movement is jerky and uses pili as its means of transport. Bacterial gliding is a type of gliding motility that can also use pili for propulsion.
The speed of gliding varies between organisms, and the reversal of direction is seemingly regulated by some sort of internal clock. For example the apicomplexans are able to travel at fast rates between 1–10 μm/s. In contrast Myxococcus xanthus bacteria glide at a rate of 5 μm/min.
Cell-invasion and gliding motility have TRAP, a surface protein, as a common molecular basis that is both essential for infection and locomotion of the invasive apicomplexan parasite. Micronemes are secretory organelles on the apical surface of the apicomplexans used for gliding motility.

Types of motility

Bacterial gliding is a process of motility whereby a bacterium can move under its own power. Generally, the process occurs whereby the bacterium moves along a surface in the general direction of its long axis. Gliding may occur via distinctly different mechanisms, depending on the type of bacterium. This type of movement has been observed in phylogenetically diverse bacteria such as cyanobacteria, myxobacteria, cytophaga, flavobacteria, and mycoplasma.
Bacteria move in response to varying climates, water content, presence of other organisms, and firmness of surfaces or media. Gliding has been observed in a wide variety of phyla, and though the mechanisms may vary between bacteria, it is currently understood that it takes place in environments with common characteristics, such as firmness and low-water, which enables the bacterium to still have motility in its surroundings. Such environments with low-water content include biofilms, soil or soil crumbs in tilth, and microbial mats.

Purpose

Gliding, as a form of motility, appears to allow for interactions between bacteria, pathogenesis, and increased social behaviours. It may play an important role in biofilm formation, bacterial virulence, and chemosensing.

Swarming motility

occurs on softer semi-solid and solid surfaces, or twitching motility on solid surfaces.

Proposed mechanisms

The mechanism of gliding might differ between species. Examples of such mechanisms include: