Graph algebra
In mathematics, especially in the fields of universal algebra and graph theory, a graph algebra is a way of giving a directed graph an algebraic structure. It was introduced in, and has seen many uses in the field of universal algebra since then.Definition
Let be a directed graph, and an element not in. The graph algebra associated with has underlying set, and is equipped with a multiplication defined by the rules
- if and,
- if and.
Applications
This notion has made it possible to use the methods of graph theory in universal algebra and several other directions of discrete mathematics and computer science. Graph algebras have been used, for example, in constructions concerning dualities, equational theories, flatness, groupoid rings, topologies, varieties, finite state automata, finite state machines,
tree languages and tree automata etc.