Grigoriy Yablonsky
Grigoriy Yablonsky is an expert in the area of chemical kinetics and chemical engineering, particularly in catalytic technology of complete and selective oxidation, which is one of the main driving forces of sustainable development.
His theory of complex steady-state and non-steady state catalytic reactions, is widely used by research teams in many countries of the world.
Now, Grigoriy Yablonsky serves as an Associate Research Professor of Chemistry at Saint Louis University’s Parks College of Engineering, Aviation and Technology and SLU’s College of Arts and Sciences.
Since 2006, Yablonsky is an editor of the Russian-American .
Some recent scientific achievements
Yablonsky – together with Lazman, developed the general form of steady-state kinetic description which is a non-linear generalization of many theoretical expressions proposed previously. Yablonsky also created a theory of precise catalyst characterization for the advanced worldwide experimental technique developed by John T. Gleaves, Washington University in St. Louis.In 2008–2011, Yablonsky – together with Constales and Marin and Alexander Gorban – obtained new results on coincidences and intersections in kinetic dependences, and found a new type of symmetry relations between the observable and initial kinetic data.
Recently together with Alexander Gorban he developed the theory of chemical thermodynamics and detailed balance in the limit of irreversible reactions.
Catalytic trigger and catalytic oscillator
A simple scheme of the nonlinear kinetic oscillations in heterogeneous catalytic reactions has been proposed by Bykov, Yablonskii, and Kim in 1978. Authors have started from the catalytic trigger, a simplest catalytic reaction without autocatalysis that allows multiplicity of steady states.Then they have supplemented this classical adsorption mechanism of catalytic oxidation by a "buffer" step
Here,
Let the concentration of the gaseous components be constant. Then the law of mass action gives for this reaction mechanism a system of three ordinary differential equations that describes kinetics on the surface
where is the concentration of the free places of adsorption on the surface, x and y are the concentrations of AZ and BZ, correspondingly and s is the concentration of the buffer component.
This three-dimensional systems includes seven parameters. The detailed analysis shows that there are 23 different phase portraits for this system, including oscillations, multiplicity of steady states and various types of bifurcations.
Reactions without interaction of different components
Let the reaction mechanism consist of reactionswhere are symbols of components, r is the number of the elementary reaction and are the stoichiometric coefficients.
The Eley–Rideal mechanism of CO oxidation on Pt provides a simple example of such a reaction mechanism without interaction of different components on the surface:
Let the reaction mechanism have the conservation law
and let the reaction rate satisfy the mass action law:
where is the concentration of.
Then the dynamic of the kinetic system is very simple: the steady states are stable and all solutions with the same value of the conservation law monotonically converge in the weighted norm: the distance between such solutions,
monotonically decreases in time.
This quasithermodynamic property of the systems without interaction of different components is important for the analysis of dynamics of catalytic reactions: nonlinear steps with two different intermediate reagents are responsible for nontrivial dynamical effects like multiplicity of steady states, oscillations or bifurcations. Without interaction of different components the kinetic curves converge in a simple norm even for open systems.
The extended principle of detailed balance
Detailed mechanism of many real physico-chemical complex systems includes both reversibleand irreversible reactions. Such mechanisms are typical in homogeneous combustion,
heterogeneous catalytic oxidation and complex enzyme reactions. The classical
thermodynamics of perfect systems is defined for reversible kinetics and has no limit for
irreversible reactions. In contrary, the mass action law gives the possibility to write the chemical kinetic equations for any
combination of reversible and irreversible reactions. Without additional restrictions
this class of equations is extremely wide and can approximate any dynamical system
with preservation of positivity of concentrations and the linear conservation laws. The model
of real systems should satisfy some restrictions. Under the standard microscopic reversibility requirement, these restrictions should be formulated as follows: A
system with some irreversible reactions should be a limit of the systems with all reversible reactions and the detailed balance conditions. Such systems have been completely described in 2011. The extended principle of detailed balance is the
characteristic property of all systems which obey the generalized mass action law and are
the limits of the systems with detailed balance when some of the reaction rate constants
tend to zero.
The extended principle of detailed balance consists of two parts:
- The algebraic condition: The principle of detailed balance is valid for the reversible part.
- The structural condition: The convex hull of the stoichiometric vectors of the irreversible reactions has empty intersection with the linear span of the stoichiometric vectors of the reversible reactions.
The extended principle of detailed balance gives an ultimate and complete answer to the following problem: How to throw away some reverse reactions without violation of thermodynamics and microscopic reversibility? The answer is: the convex hull of the stoichiometric vectors of the irreversible reactions should not intersect with the linear span of the stoichiometric vectors of the reversible reactions and the reaction rate constants of the remained reversible reactions should satisfy the Wegscheider identities.
Career
From 1997 to 2007, Yablonsky was in the Department of Energy, Environmental and Chemical Engineering at Washington University in St. Louis as a Research Associate Professor. Since 2007, Yablonsky became an Associate Professor at Saint Louis University's Parks College of Engineering, Aviation and Technology, as well as the Department of Chemistry.During his career, G. Yablonsky has organised many conferences and workshops at national and international levels. He is always in the centre of interdisciplinary dialogue between mathematicians, chemists, physicists and chemical engineers.
Yablonsky was selected in 2013 for the James B. Eads Award, which recognizes a distinguished individual for outstanding achievement in engineering or technology.
Honors and awards
- Lifetime Achievement Award, in recognition of outstanding contributions to the research field of chemical kinetics, Mathematics in Chemical Kinetics and Engineering, MaCKiE, 2013
- James B. Eads Award, Academy of Science of St. Louis Outstanding Scientist Award
- Honorary Doctor Degree from the University of Ghent, Belgium
- Chevron Chair Professorship at the Indian Institute of Technology, Madras
- Honorary Fellow of the Australian Institute of High Energetic Materials, Gladstone, Australia
Professional memberships and associations
- 1996 – present: American Institute of Chemical Engineers
- 2011 – present: American Chemical Society
- 2011 – present: Member of the Scientific Council on Catalysis at the Russian Academy of Sciences
- 2013 – present: Fellow, Academy of Science of St. Louis
Notable publications