Grothendieck space


In mathematics, a Grothendieck space, named after Alexander Grothendieck, is a Banach space X in which every weakly* convergent sequence in the dual space X* converges with respect to the weak topology of X*.

Characterisations

Let X be a Banach space. Then the following conditions are equivalent:
  1. X is a Grothendieck space,
  2. for every separable Banach space Y, every bounded linear operator from X to Y is weakly compact, that is, the image of a bounded subset of X is a weakly compact subset of Y,
  3. for every weakly compactly generated Banach space Y, every bounded linear operator from X to Y is weakly compact.
  4. every weak*-continuous function on the dual X* is weakly Riemann integrable.

    Examples