Group with operators


In abstract algebra, a branch of mathematics, the algebraic structure group with operators or Ω-group can be viewed as a group with a set Ω that operates on the elements of the group in a special way.
Groups with operators were extensively studied by Emmy Noether and her school in the 1920s. She employed the concept in her original formulation of the three Noether isomorphism theorems.

Definition

A group with operators can be defined as a group together with an action of a set on :
that is distributive relative to the group law:
For each, the application is then an endomorphism of G. From this, it results that a Ω-group can also be viewed as a group G with an indexed family of endomorphisms of G.
is called the operator domain. The associate endomorphisms are called the homotheties of G.
Given two groups G, H with same operator domain, a homomorphism of groups with operators is a group homomorphism satisfying
A subgroup S of G is called a stable subgroup, -subgroup or -invariant subgroup if it respects the homotheties, that is

Category-theoretic remarks

In category theory, a group with operators can be defined as an object of a functor category GrpM where M is a monoid and Grp denotes the category of groups. This definition is equivalent to the previous one, provided is a monoid.
A morphism in this category is a natural transformation between two functors. Again we recover the definition above of a homomorphism of groups with operators.
A group with operators is also a mapping
where is the set of group endomorphisms of G.

Examples

The Jordan–Hölder theorem also holds in the context of operator groups. The requirement that a group have a composition series is analogous to that of compactness in topology, and can sometimes be too strong a requirement. It is natural to talk about "compactness relative to a set", i.e. talk about composition series where each subgroup is an operator-subgroup relative to the operator set X, of the group in question.