H-infinity loop-shaping


H-infinity loop-shaping is a design methodology in modern control theory. It combines the traditional intuition of classical control methods, such as Bode's sensitivity integral, with H-infinity optimization techniques to achieve controllers whose stability and performance properties hold despite bounded differences between the nominal plant assumed in design and the true plant encountered in practice. Essentially, the control system designer describes the desired responsiveness and noise-suppression properties by weighting the plant transfer function in the frequency domain; the resulting 'loop-shape' is then 'robustified' through optimization. Robustification usually has little effect at high and low frequencies, but the response around unity-gain crossover is adjusted to maximise the system's stability margins. H-infinity loop-shaping can be applied to multiple-input multiple-output systems.
H-infinity loop-shaping can be carried out using commercially available software.
H-infinity loop-shaping has been successfully deployed in industry. In 1995, R. Hyde, K. Glover and G. T. Shanks published a paper describing the successful application of the technique to a VTOL aircraft. In 2008, D. J. Auger, S. Crawshaw and S. L. Hall published another paper describing a successful application to a steerable marine radar tracker, noting that the technique had the following benefits: