Hausdorff measure


In mathematics a Hausdorff measure is a type of outer measure, named for Felix Hausdorff, that assigns a number in to each set in or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set or ∞ if the set is infinite. The one-dimensional Hausdorff measure of a simple curve in is equal to the length of the curve. Likewise, the two dimensional Hausdorff measure of a measurable subset of is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes counting, length, and area. It also generalizes volume. In fact, there are d-dimensional Hausdorff measures for any d ≥ 0, which is not necessarily an integer. These measures are fundamental in geometric measure theory. They appear naturally in harmonic analysis or potential theory.

Definition

Let be a metric space. For any subset, let denote its diameter, that is
Let be any subset of and a real number. Define
where the infimum is over all countable covers of by sets satisfying.
Note that is monotone decreasing in since the larger is, the more collections of sets are permitted, making the infimum smaller. Thus, exists but may be infinite. Let
It can be seen that is an outer measure. By general theory, its restriction to the σ-field of Carathéodory-measurable sets is a measure. It is called the -dimensional Hausdorff measure of. Due to the metric outer measure property, all Borel subsets of are measurable.
In the above definition the sets in the covering are arbitrary.
However, we can require the covering sets to be open or closed, or in normed spaces even convex, that will yield the same numbers, hence the same measure. In restricting the covering sets to be balls may change the measures but does not change the dimension of the measured sets.

Properties of Hausdorff measures

Note that if d is a positive integer, the d dimensional Hausdorff measure of is a rescaling of usual d-dimensional Lebesgue measure which is normalized so that the Lebesgue measure of the unit cube d is 1. In fact, for any Borel set E,
where αd is the volume of the unit d-ball; it can be expressed using Euler's gamma function
Remark. Some authors adopt a definition of Hausdorff measure slightly different from the one chosen here, the difference being that it is normalized in such a way that Hausdorff d-dimensional measure in the case of Euclidean space coincides exactly with Lebesgue measure.

Relation with Hausdorff dimension

One of several possible equivalent definitions of the Hausdorff dimension is
where we take

Generalizations

In geometric measure theory and related fields, the Minkowski content is often used to measure the size of a subset of a metric measure space. For suitable domains in Euclidean space, the two notions of size coincide, up to overall normalizations depending on conventions. More precisely, a subset of is said to be -rectifiable if it is the image of a bounded set in under a Lipschitz function. If, then the -dimensional Minkowski content of a closed -rectifiable subset of is equal to times the -dimensional Hausdorff measure.
In fractal geometry, some fractals with Hausdorff dimension have zero or infinite -dimensional Hausdorff measure. For example, almost surely the image of planar Brownian motion has Hausdorff dimension 2 and its two-dimensional Hausdoff measure is zero. In order to “measure” the “size” of such sets, mathematicians have considered the following variation on the notion of the Hausdorff measure:
This is the Hausdorff measure of with gauge function or -Hausdorff measure. A -dimensional set may satisfy but with an appropriate Examples of gauge functions include
The former gives almost surely positive and -finite measure to the Brownian path in when, and the latter when.