Highly composite number


A highly composite number is a positive integer with more divisors than any smaller positive integer has. The term was coined by Ramanujan. However, Jean-Pierre Kahane has suggested that the concept might have been known to Plato, who set 5040 as the ideal number of citizens in a city as 5040 has more divisors than any numbers less than it.
The related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller positive integer.
The name can be somewhat misleading, as two highly composite numbers are not actually composite numbers.

Examples

The initial or smallest 38 highly composite numbers are listed in the table below . The number of divisors is given in the column labeled d. Asterisks indicate superior highly composite numbers.
OrderHCN
n
prime
factorization
prime
exponents
number
of prime
factors
dprimorial
factorization
1101
2*2112
34223
4*61,124
5*122,136
6243,148
7362,249
8484,1510
9*602,1,1412
10*1203,1,1516
111802,2,1518
122404,1,1620
13*3603,2,1624
147204,2,1730
158403,1,1,1632
1612602,2,1,1636
1716804,1,1,1740
18*25203,2,1,1748
19*50404,2,1,1860
2075603,3,1,1864
21100805,2,1,1972
22151204,3,1,1980
23201606,2,1,11084
24252004,2,2,1990
25277203,2,1,1,1896
26453604,4,1,110100
27504005,2,2,110108
28*554404,2,1,1,19120
29831603,3,1,1,19128
301108805,2,1,1,110144
311663204,3,1,1,110160
322217606,2,1,1,111168
332772004,2,2,1,110180
343326405,3,1,1,111192
354989604,4,1,1,111200
365544005,2,2,1,111216
376652806,3,1,1,112224
38*7207204,2,1,1,1,110240

The divisors of the first 15 highly composite numbers are shown below.
ndDivisors of n
111
221, 2
431, 2, 4
641, 2, 3, 6
1261, 2, 3, 4, 6, 12
2481, 2, 3, 4, 6, 8, 12, 24
3691, 2, 3, 4, 6, 9, 12, 18, 36
48101, 2, 3, 4, 6, 8, 12, 16, 24, 48
60121, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
120161, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
180181, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180
240201, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240
360241, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
720301, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720
840321, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840

The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways.
The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes:
where is the sequence of successive prime numbers, and all omitted terms are factors with exponent equal to one. More concisely, it is the product of seven distinct primorials:
where is the primorial.
File:Highly_composite_numbers.svg|thumb|250px|Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. In , hover over a bar to see its statistics.

Prime factorization

Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, but not too many of the same. By the fundamental theorem of arithmetic, every positive integer n has a unique prime factorization:
where are prime, and the exponents are positive integers.
Any factor of n must have the same or lesser multiplicity in each prime:
So the number of divisors of n is:
Hence, for a highly composite number n,
Also, except in two special cases n = 4 and n = 36, the last exponent ck must equal 1. It means that 1, 4, and 36 are the only square highly composite numbers. Saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials.
Note, that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example, 96 = 25 × 3 satisfies the above conditions and has 12 divisors but is not highly composite since there is a smaller number 60 which has the same number of divisors.

Asymptotic growth and density

If Q denotes the number of highly composite numbers less than or equal to x, then there are two constants a and b, both greater than 1, such that
The first part of the inequality was proved by Paul Erdős in 1944 and the second part by Jean-Louis Nicolas in 1988. We have
and

Related sequences

Highly composite numbers higher than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first HCN that is not a Harshad number is 245,044,800, which has a digit sum of 27, but 27 does not divide evenly into 245,044,800.
10 of the first 38 highly composite numbers are superior highly composite numbers.
The sequence of highly composite numbers is a subset of the sequence of smallest numbers k with exactly n divisors.
Highly composite numbers whose number of divisors is also a highly composite number are for n = 1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 2205403200, 293318625600, 6746328388800, 195643523275200. It is extremely likely that this sequence is complete.
A positive integer n is a largely composite number if dd for all mn. The counting function QL of largely composite numbers satisfies
for positive c,d with.
Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. Many of these numbers are used in traditional systems of measurement, and tend to be used in engineering designs, due to their ease of use in calculations involving fractions.