Homeotropic alignment


In liquid crystals, homeotropic alignment is one of the ways of alignment of liquid crystalline molecules. Homeotropic alignment is the state in which a rod-like liquid crystalline molecule aligns perpendicularly to the substrate. In the polydomain state, the parts also are called homeotropic domains. In contrast, the state in which the molecule aligns to a substance in parallel is called homogeneous alignment.
There are various other ways of alignment in liquid crystals. Because homeotropic alignment is not anisotropic optically, a dark field is observed between crossed polarizers in polarizing optical microscopy.
By conoscope observation, however, a cross image is observed in the homeotropic alignments. Homeotropic alignment often appears in the smectic A phase.
In discotic liquid crystals homeotropic alignment is defined as the state in which an axis of the column structure, which is formed by disc-like liquid crystalline molecules, aligns perpendicularly to a substance. In other words, this alignment looks like a state in which columns formed by piled-up coins are arranged in an orderly way on a table.
In practice, the homeotropic alignment is usually achieved by surfactants and detergent for example lecithin, some esilanes or some special polyimide. Generally liquid crystals align homeotropically at an air or glass interface.